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NONVOLATILE PROCESSORS (NVPS) ARE A PROMISING SOLUTION FOR ENERGY-

HARVESTING SCENARIOS IN WHICH THE AVAILABLE POWER SUPPLY IS UNSTABLE AND

INTERMITTENT. THIS ARTICLE EXPLORES THE DESIGN SPACE FOR AN NVP ACROSS

DIFFERENT ARCHITECTURES, INPUT POWER SOURCES, AND POLICIES FOR MAXIMIZING

FORWARD PROGRESS IN A FRAMEWORK CALIBRATED USING MEASURED RESULTS FROM A

FABRICATED NVP. THE AUTHORS PROPOSE A HETEROGENEOUS MICROARCHITECTURE

SOLUTION THAT EFFICIENTLY CAPITALIZES ON EPHEMERAL POWER SURPLUSES.

e o o o o o 10 handle unstable power condi-
tions, such as power from ambient Wi-Fi sig-
nals, solar panels, and human movement
piezo-electronic energy harvesters (see the
“Energy-Harvesting Systems” sidebar), tradi-
tional processors need a large energy-storage
device such as a supercapacitor to conserva-
tively accumulate sufficient energy for task
completion before that task starts. Otherwise,
a task failure could occur at every power-
supply emergency. Although this approach is
viable for certain deployments, both form
factor (the energy-storage device’s mass and/
or size) and conversion efficiency can pre-
clude fully conservative solutions. Existing
solutions to power instability mainly consist
of checkpointing techniques to store the
intermediate task computation states to
external nonvolatile memory (NVM) stor-
age, such as flash, before power failures occur.
However, reset and rollbacks with communi-
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cation to external data storage result in high
performance and power costs."

Unlike traditional processors, nonvolatile
processors (NVPs) can leverage their nonvo-
latility feature to ensure forward progress
without relying on additional durable storage
to preserve processor state."™ An NVP is a
processor with built-in NVM and the facili-
ties to back up all state on the chip to these
memories when a power failure occurs and to
restore the processor state when power
returns. Importanty, an NVP’s instruction-
level backup and recovery operations can be
built transparent to programmers and com-
pilers, making it compatible with many
design automation techniques and more
energy efficient than existing solutions.
Although NVPs intuitively offer simpler
minimum forward progress guarantees,
recent works®™ have shown that NVPs offer
superior overall forward progress—that is,
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Energy-Harvesting Systems

Recent developments in body-area networks and the Internet of
Things (loT) markets have led to a profound proliferation of power-
constrained and form-factor-constrained devices. For many of these
devices, their intended deployment conditions or durations make bat-
tery-powered operation difficult or impractical. With technological
improvements in both material types and computation efficiency,
energy-harvesting systems'~® have become a plausible alternative to
battery-powered operation, in that the average power available for
harvesting-powered devices is now sufficient to perform meaningful
computation. Figure A shows a sampling of such energy-harvesting

loT devices”® and highlights their diversity in energy source (RF, pie-
zoelectric,>'° thermal," and solar'?), form factor, application space,
and power needs. Although such devices are well-suited for certain
niche applications, they do not present a competitive alternative for
the complex computations required by more mainstream applications.
This is because of the difficulty in using a short-term power budget
that is both highly variable and deeply unpredictable.

Figure B shows the power traces for four typical ambient energy
sources that could be harvested to power an embedded system:
namely, solar energy and energy due to RF radiation, piezoelectric
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Figure A. A sampling of energy-harvesting Internet of Things devices. (1) A Wi-Fi-powered camera, with demonstration
system mounted on an industrial gas cylinder, monitoring a pressure gauge.”: (2) In-shoe piezoelectric devices® and a
piezoelectric ear canal motion energy harvester.'® (3) Thermoelectric generator.'" (4) Solar leaves.'?
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effect, and thermal gradients. The RF energy is obtained by measur-
ing the power of the frequency spectrum from a TV station, the piezo-
electric energy is measured through devices fixed on a hike, the
thermal energy is generated from characterizations described by
Romain Grezaud and Jerome Willemin,'® and the solar trace is
obtained using data from the Measurement and Instrumentation
Data Center (www.nrel.gov/midc). Although all of these sources are
nearly ubiquitously available, there are several drawbacks in relying
on ambient sources of energy for computing purposes. Most harvest-
ers of these energy sources operate at relatively low conversion effi-
ciencies, because only a small fraction of the total transmitted power
can be tapped. In addition, a common issue across harvesting sys-
tems is unstable input power, because external factors could cause a
supply disruption. For instance, ambient RF or Wi-Fi power can vary
arbitrarily, according to power source, frequency, distance from the
transmitter, height, obstacles, external electromagnetic signals, and
other factors®; Figure B1 showcases this phenomenon, with instanta-
neous power levels that can vary by orders of magnitude over even
very short timescales. To understand how these sources’ properties
will enable and limit various aspects of energy-harvesting systems,
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we classify power sources according to three primary characteristics:
signal magnitude, signal strength variability, and power drop-out fre-
quency (intermittency).

With respect to signal variability, we observe substantial variation
in power, even over a few milliseconds, for RF in Figure B1 with the
ratio between the maximum and minimum power over this period
around 250 times. The piezoelectric power is more stable than RF
with just some short power loss in Figure B2. The thermal power,
shown in Figure B3, is even more stable, because of the gradual
nature of temperature variation. Variation in solar power, seen in Fig-
ure B4, depends on the weather conditions and orientation of the
solar cell.

Another feature is the intermittency frequency, which influences
how soon the power drops below a viable threshold, as indicated by
the annotations in Figure B1. The intermittency frequency strongly
influences backup and recovery overheads. Sources with periodic
behavior, as in Figure B2, favor prediction of power loss and enable
efficient scheduling of tasks, whereas less predictable sources similar
to Figure B1 must consider more conservative approaches or minimize
the cost of mispredictions.
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Figure B. Power traces. (1) TV station RF, (2) piezoelectric, (3) thermal, and (4) solar. Sample time for each figure is 0.33 ps.
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conversion of incoming energy into useful
work—than other approaches.

The concept of a processor or microcon-
troller with integrated nonvolatility is not
new. Commercial products from Texas Instru-
ments® and chips from academic sources®
have been produced with nonvolatile reten-
tion features. However, our previous work’
and its extensions” represent the first explora-
tion into the architectural design space of
NVPs; the interactions among microarchitec-
tures, backup policies, and harvesting technol-
ogies; and the design and management of an
energy-harvesting system that maximizes con-
version of incoming ambient energy into use-
ful work in an environment where power
emergencies can occur with frequencies in the
tens of instructions. Our work aims to provide
forward guidance for an increasingly battery-
less Internet-of-Things future, and we have
highlighted key differences between design
optimizations for harvesting and battery-
powered systems.

Our models have been validated against
fabricated NVP hardware, taking into account
system-level effects of power instability
beyond the processor itself. NVP research is
fundamentally cross-layer in nature, because
power instability affects every aspect of the sys-

tem, from application quality of service to
delays in phase-locked-loop stabilization to
the interaction of capacitor sizing, rectifier effi-
ciency, and the ability to make predictions
regarding whether continued execution during
a power emergency is likely to improve or
degrade the rate of progress. We show how,
even in this extremely power-limited environ-
ment, aggressive architectures operating
beyond the maximum efficiency point can
actually be beneficial in scenarios where peak
power can be vastly higher than average, and
we show the potential of predictive mecha-
nisms to more aggressively exploit whatever
incoming energy does stll arrive during a
power emergency and to select among micro-
architectures in a heterogeneous design to
maximize forward progress. In this article, we
summarize our key findings and approaches
to exploring the tradeoffs in the design space
of NVP architectures and policies.

Architectural and Backup Policy Codesign
Space

Even the simplest processor microarchitec-
ture has multiple possible policies for what
state to back up and when. Here, we outline

the space of microarchitectures and
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Figure 1. Runtime components for nonpipelined (NP) configuration schemes.
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associated policies we considered. We focused
on determining which architectural configu-
rations were best suited to optimally use the
available power and energy by maximizing
processor performance under different energy
constraints. Hence, depending on the energy
harvested, we analyzed various parameters,
such as the number of pipeline stages, data to

be backed up, and frequency of backups.

Nonpipelined Configuration

In the absence of any pipeline stages, the
entire processor state can be characterized by
a single instruction state. In addition to the
architecture, there are also tradeoffs between
the energy consumed in backing up and
recovering the data and the overall perform-
ance. We explore these tradeoffs by choosing
which data to save and where and when to
save them for three architectures of gradient
complexity.

The first policy, backup every cycle (BEC),
employs an NVM register file, or else both
the contents of a volatile Regfile and its coun-
terpart nonvolatile location need to updated
every cycle. As Figure 1 shows, only the pro-
gram counter (PC) and a few registers are
written into the Regfile every cycle. Some
instructions, such as StoreWord and Jump,
do not require any further Regfile write.

The second policy, on-demand all backup
(ODAB), differs from the previous solution
in that all RegFile entries must be backed up
only in the event of a reduced power state. In
the last policy, on-demand selective backup

(ODSB), only data that has changed since
the last backup is updated in NVM.

N-Stage Pipeline (In Order)

Owing to the increase in processor circuit
complexity and activity factor in an n-stage
pipeline processor, the power threshold of this
design in energy-harvesting systems is higher
than that of the nonpipelined (NP) case.

We consider two strategies for backup in
the pipelined design (see Figure 2). In the
first scheme, shifted PC and volatile flip-flop
(SPC/VFF), a shifter buffer is designed to
remember the PC value in each pipeline
stage. The unfinished PC to be backed up
would then be in the data memory stage. In
the second scheme, nonvolatile flip-flops
(NVFF), the PC and RegFile are automat-
cally backed up through NVM flip-flops in
the instruction fetch/instruction decode (IF/

ID) pipeline stages.

Out-of-Order Processors

Although 00O processors are less frequently
low-power  deployments
because of their lower efficiency, the need of
batteryless harvesting systems to greedily con-
sume power when it is present can still make
them a competitive option. Because of its
higher activation requirements, an OoQ pro-
cessor will be less frequently active than the
other two datapath designs, and it also con-
tains more state to consider saving during
power emergencies. We considered several
policies for an Q0O processor.

considered  for
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Figure 2. Runtime components for five-stage pipelined (5-SP) schemes. (SPC: shifted PC; NVFF: nonvolatile flip-flops; VFF:

volatile flip-flops.)

Minimum-state resource backup solution (Mi-
nR). MinR backs up the minimal number of
bits required to preserve functionality across
power interruptions, including first uncom-
mitted PC at the head of the reorder buffer
(ROB), architectural RegFile, and map table.
However, before backing up, some extra oper-
ations are needed to achieve a consistent state.

Low-latency backup solution (LLB). Rather
than back up only the first uncommitted PC,
this solution backs up the entire ROB, the
instruction queue (IQ), ARegFile, map table,
and PRegFile. Although LLB has more struc-
tures to be backed up than MinR, it can
sometimes be more energy efficient because
of the extra work required in MinR both pre-
backup and post recovery.

Middle-level backup solution (MLB). Instead
of using extra recovery time and energy to restore
the ready table and free list in the LLB, MLB
backs up the ready table and free listas well.

Min-state-lost backup solution. In this solu-
tion, all the structures are backed up, includ-
ing the branch history buffer (BHT) and
branch target buffer (BTB).

Incremental backup. This scheme combines
two key insights. During power emergencies,
power income often is still greater than zero,
and if substantial capacitor energy remains
after the minimum amount of state has been
preserved, the system can continue backing up
progressively less-essential microarchitectural

state to preserve performance after recovery,
despite having a capacitor provisioned only
for minimal backup margins. This could delay
recovery from shorter power emergencies,
because the capacitor might be more drained
than it otherwise would have been.

Architecture Selection

Which nonvolatile architecture provides the
best forward progress for a particular applica-
tion scenario depends on various factors. The
input power and the stability of the power
supply are two key elements that impact the
choice. In addition, the application’s compu-
tational complexity and performance require-
ments are also important.

To evaluate our different design strategies,
we developed a simulation framework for
modeling both execution and power emer-
gencies. We validated this framework, espe-
cially the system-level effects of power
emergencies, against a fabricated NVP” Our
framework models
based on synthesized versions of all three
pipelines (including an OoO design from

energy COIlSllmptiOIl

Fabscalar®) in Synopsys Design Compiler
with a 45-nm TSMC low-power library.

The input signal characteristics play a
major role in determining the optimal design,
as our experiments with Wi-Fi power trails
under different environmental conditions
made clear. Figure 3 demonstrates the per-
formance of the various backup schemes
when home and office Wi-Fi sources are used
for harvesting energy. For the home environ-
ment, a nonpipelined ODSB architecture
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Figure 3. Execution time when harvesting Wi-Fi energy. (a) Home environment (with one
router as the strongest and the others with relatively weak signals). (b) Office environment

(with multiple routers of similar signal strength).

performs best, whereas in the office environ-
ment, the more complex OoO processor is
desirable. This is because the home Wi-Fi sig-
nal typically comprises a single router, whereas
the office environment usually comprises sig-
nals from more routers. A disturbance in the
signal would result in input power going to
almost zero in the home environmeng; thus,

the simplest design with the lowest power
threshold is preferred. In contrast, in the office
environment, the additional routers continue
to supply input power at a relatively similar
strength in an uninterrupted fashion, allowing
for more complex architectures.

Here, we briefly summarize our findings
when comparing architecture and policy pairs.
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Of the NP policies, ODSB is the most energy-
efficient strategy when the source is relatively
stable (for example, solar energy). Compared
to ODAB, ODSB can reduce the backup
energy penalty by 69 percent with only 0.002
percent area overhead. Although BEC is not
the most energy efficient, with very weak sour-
ces such as Wi-Fi, it does not require the time
to accumulate energy in the capacitor to
ensure sufficient backup energy is available.
Thus, it is viable when the power failures are
extremely frequent (less than 1 in 10 cycles),
which rarely happens even in Wi-Fi sources.

For pipelined processors, we find that
SPC/VFF requires 11 percent less time and
57 percent less energy than NVFE An extra
four clock cycles are needed to reexecute the
last four instructions that are lost from the
latter pipeline stages after recovery (we regard
this as part of the recovery time penalty).
However, only backing up one PC with a
small shifter allows a smaller backup capaci-
tor with lower leakage to be sufficient for
SPC/VFE which in turn affects the power
threshold. In this case, SPC/VFF will also be
able to outperform NVFF after several
repeated instructions.

The O0O processor’s viability and backup
preference depend highly on the power pro-
file, offering both substantial speedups and
large slowdowns for different power input
traces. In particular, the OoO processor
backup policies are sensitive to the frequency
of power emergencies. For the traces exam-
ined, the incremental backup approach was
highly promising.

Smart Matching Architecture

The results of the previous section highlight
how different architectures can achieve supe-
rior progress depending on the application
and power profile features. This variable
affinity also exists at finer temporal granular-
ity within a power profile. To exploit this, we
propose using a dynamic heterogeneous
architecture with N, 7-stage pipelined, and
000 microarchitecture cores to fit different
scenarios (see Figure 4).” The NP datapath
has the lowest energy per instruction at our
minimum considered frequency, giving it the
lowest turn-on threshold and making it suit-
able for periods with minimally viable power
incomes. For our NSP design, we employ
pipelining not to achieve a higher frequency,
but to achieve the same frequency as the NP
design at a lower voltage. Finally, the OoO
processor’s greater performance can lead to
greater overall progress despite less-frequent
activation opportunities, making all three
designs plausible selections for being the
most suitable core for executing a portion of
a program given varying input power.

At one time, only one microarchitecture is
active, and a dynamic matching architecture
controller selects the active core. The control-
ler comprises two primary components: a fea-
ture extractor that accumulates the recent
history of input power and power emergen-
cies into a signature, and a prediction module
that maps this signature to a selection.
Because of the predictor’s relatively high
complexity compared to the simple NP and
NSP datapaths, this controller is activated to

MAy/June 2016
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perform a prediction only once every 200
ms, thus limiting prediction overhead. The
controller predicts if and when the micro-
architecture should be switched, for example,
from NP to OoO due to underexploitation
of incoming power, or from OoO to NP due
to excessive frequency of backup events. If
the nonvolatile storage is augmented with
double buffering, the same controller can
also be used to make predictions on whether
power emergencies will resolve before stored
energy is depleted, eliding a backup opera-
tion. If the controller changes the current
microarchitecture setting, it will need to take
several steps to finish such a switching opera-
tion, and the transition overheads vary
depending on which transition is occurring.

Switching among architectures requires
several steps to be carried out under the con-
trol of the dynamic matching architecture
controller. The complexity of the switch
varies depending on which transition is
occurring. For example, the NP to NSP or
000 transition proceeds through the follow-
ing steps:

1. The controller ensures that there is
enough energy storage to guarantee
successful microarchitecture switching,

2. The controller gates the clock signal
and waits for longer than one normal
clock cycle to make sure that one
instruction is finished for NP.

3. The PC indicating the next instruc-
tion address in instruction memory
is shared from NP to NSP or O0O.

4. The register file is volatile and has
already been updated by NP The
control signals of register files are
now handed over from NP to NSP
or O00.

5. The data memory is nonvolatile and
handed over from NP to NSP or
000.

6. The PC part for NP, the arithmetic
logic unit part for N, and the write-
back part for NP are all supply gated

to avoid leakage.

The process of switching from NSP to
NP or O0O is similar, albeit with a higher
initial energy threshold. Key differences
include potential reexecution of software if it
is the oldest incomplete instruction and slight

differences in PC backup. The NSP PC
tracking hardware (SPC/VFF) can be inte-
grated into both the NP and NSP pipelines
to simplify transitions between the two
datapaths.

Switching from Oo0O is more compli-
cated. The minimum energy required for a
switch is much higher than that of NP and
NSP, because OoO needs to restore the origi-
nal states changed by the uncommitted
instructions. We resume on uncommitted
the PC at the head of ROB and squash all
other instructions regardless of status, lever-
aging existing branch misprediction path-
ways. When returning to OoO from NP or
NSP, performance could initially be substan-
tially lower than that observed during the
preceding OoO execution period. This is
because some metadata related to perform-
ance rather than correctness (for example,

BHT and/or BTB) is lost.

Result and Discussion

Figure 5 compares a baseline execution of the
NP core at 32 KHz against the dynamic
matching architecture. For the same power
profile, the forward progress of NSP is 1.08
times that of NP, and the forward progress of
000 is 1.32 times that of NP. We also test
other power profiles and observe that the for-
ward progress ratio of OoO to NP varies
from 2.55 to 0.14 times. Because OoO
requires a higher power and energy threshold,
this ratio is highly dependent on the power
sources and profiles. The power profile
shown in Figure 5a is the power input
sampled every 0.2 seconds per point in the
ambient Wi-Fi environment. The Wi-Fi’s
variation is large because of the multiple
channel effect, data transformation, obstacle
movement, signal refraction, and reflections.
The maximum temporal power can be 300
times larger than the minimum power. We
also compare with a fixed OoO core, but we
show only the NP baseline for clarity. The
NP baseline shows continuous forward prog-
ress due to a lack of backup events for this
particular power trace. Note, however, that
system execution does not begin until there is
sufficient stored energy for a successful
backup.

Figures 5b and 5¢ show the stored energy,
backup operations, and current processor
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Figure 5. Baseline: a nonvolatile processor with only one NP microarchitecture core simulation result. (a) An example 1-

minute power profile in an ambient Wi-Fi environment. (b) Scaled stored energy level in a 470 uF energy storage capacitor. (c)

Scaled forward progress simulation results for dynamic matching architecture with nonpipelined (NP), n-stage pipelined

(NSP), and out of order; the neural network comprises four hidden layers with 30, 10, 10, and 10 neurons in each hidden layer.
(d) Stored energy level as inputs and backup number count. (e) Neural network outputs for the microarchitecture core
selection. (f) Forward progress result for the dynamic matching architecture.

mode. For this power profile and training
result, and the input power profile, NSP is
not selected, and there are numerous switches
between NP and O0O. As Figure 5b shows,
the stored energy level is consumed more
aggressively in the dynamic architecture than
the baseline. This reduces the percentage of
time when the capacitor saturates, which
avoids energy losses due to insufficient
energy-storage capacity. More aggressive con-
sumption does come with a cost: Compared
to the baseline with no backup operation,
this dynamic matching architecture needs 13
backup operations. However, the net effect of
consumption increase is strongly positive,
turning more incoming energy into compu-
tation. This significantly increases the for-
ward progress, achieving 2.4 and 1.82 times

the progress of the baseline NP and OoO

architectures, respectively.
N onvolatile-processor-based  platforms
can be an ideal enabler for the IoT and
wearable devices. Some of the explored archi-
tectures have been adopted and verified
through fabrication: for example, the pro-
posed ODSB solution is applied in second-
generation NVP?

In the near future, we will explore how tra-
ditional techniques such as dynamic voltage
and frequency scaling can be applied to NVP
and how should it be adjusted. A hybrid archi-
tecture with dynamic resources could also be
useful to adapt to variable power profiles.
Rather than traditional architecture methods,
a machine-learning-based controller proves to
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predict in high quality in control path design.
Accelerators for machine learning application-
level algorithms based on software implemen-
tation or hardware implementation can even
be merged for both the application and con-
troller. New devices like the Tunnel-FET can
also be applied to further reduce the power
consumption for NVPs.'®"" Novel distrib-
uted circuits merging both the computation
and backup operations can further reduce the
backup time and energy.' HICRO
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