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Abstract—Steep-slope tunnel devices promise new 
opportunities in ultra-low-power computing. This paper focuses 
on how steep-slope devices can enhance efficiencies of harvesting 
ambient RF energy and improve power efficiency of analog and 
digital computational blocks. 

I. INTRODUCTION 
Ambient radio-frequency (RF) signals have already been 

harvested as a power source in applications like passive radio 
frequency identification (RFID) tags [1]-[10]. The ambient RF 
signal resonates with the antenna and the receiver circuits in the 
tag, and powers the signal-processing and wireless data 
transmission between the battery-free tag and the reader. By 
replacing batteries with RF-power harvesters, RF-powered 
systems can reduce cost and weight associated with batteries, 
and also eliminate the inconvenience of charging or replacing it. 
For implantable biosensors, the removal of batteries from the 
system also reduces chemical and biological infection risk. 

Due to limited RF power that could be harvested from the 
ambient environment and the challenges in achieving high 
power-conversion efficiency (PCE) of energy scavenging from 
these weak sources, existing RF-powered systems have limited 
operation range and computational capability. For example, 
with a wireless several-watt RF signal transmitter, existing 
RFID tags typically have an operation range of meters and 
support only primitive sensing,  identification, or transmission 
[1]-[10]. Therefore, exploration of RF-powered systems with 
more power-efficient energy harvesters, signal processing 
modules, and wireless transmitters is of great significance. 

The advent of new transistor technology promises new 
opportunities for designing RF-powered systems. Steep-slope 
tunnel field-effect transistors (TFETs) have become a 
promising candidate to replace CMOS FETs with higher 
power-efficiency for low-voltage digital applications due to the 
tunneling characteristics at a low power supply [11][12][13]. 
Analog and RF TFET designs have been explored, showing the 
advantage resulting from features such as lower sub-threshold 
swing, uni-directional tunneling, and low-voltage operation 
[12][14]. When steep-slope TFETs are used in the design of 
RF-powered systems, this paper shows that both the PCE of 
power harvesters, and the power-efficiency of signal processing 
blocks can be improved significantly. Such improvements can 
enable new wireless applications such as insect behavior 
monitoring, implantable medical devices and swarms of 
computational sensors. 

The rest of this paper focuses on the following three aspects: 
Section II introduces ambient RF power sources. It also 
provides a review of emerging RF-powered embedded systems 
and applications with typical power-harvesting and signal-
processing blocks; Section III shows the benefits of employing 
steep-slope TFET in the RF-powered system design, through 
the discussions of the device characteristics, and the 
demonstrations of some key blocks based on steep-slope TFET, 
to achieve a higher power efficiency in energy harvesting and 
signal processing. Next, we discuss other challenges in future 
RF-powered embedded system design using steep-slope TFETs. 

II. AMBIENT RF POWER AND RF-POWERED SYSTEMS 
Typical ambient RF power sources mainly include cellular 

signals, WiFi, TV broadcast signals, and RFID signals subject 
to the regulations of the government (e.g. FCC) with varying 
frequency and power density. Assuming ideal impedance 
match between the antenna and the power harvesting circuit, 
Fig. 1 summarizes the sensed RF power density in the urban 
area, in comparison with typical circuit power consumptions. 
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Fig. 1.  Ambient RF power compared with typical circuit power consumptions. 

A. Power Obtained By the Receiver Antenna  
In order to calculate the harvested power by the receiver 

antenna Pr from RF signals, the Friis free-space transmission 
equation gives Pr at a distance d, with the transmitted power Pt: 

              � �2
,4r t t r harvester

λP P G G η πd � � � �     (1) 
where Gt and Gr are the antenna gains with respect to an 
isotropic radiator of the transmitting and receiving antennas 
respectively, λ is the wavelength, and ηharvester is the PCE of the 
power harvester consisting of impedance matching network 
and RF-to-DC rectifier [16]. It is assumed that the impedance 
matching is ideal to make sure the power obtained by the 
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antenna is absorbed by the subsequent rectifier, which converts 
RF input signal to DC output voltage. Note that the received 
power Pr decreases with the square of the frequency and the 
distance d. Also, the ideal size of a certain type of antenna is 
proportional to λ. If it cannot be satisfied by some size-
restricted applications, the harvested power would be less. 

B. RF-Powered Systems And Applications 
In recent years, many RF-powered applications have 

emerged, including battery chargers [3], wideband transceivers 
[10], and various sensing systems with temperature sensors [5], 
pressure sensors [1], neural sensors [7], and glucose sensors [2]. 
Table I lists some recently reported RF-powered systems. 
These systems harvest power from RF signals in the ultra-high 
frequency (UHF) band, and the consumed power ranges from a 
few micro watts for low-power biomedical sensors to higher 
than ten milliwatts for a high-speed UWB transceiver with a 
data rate up to 112 Mbps. The operation ranges of the systems 
in Table I are restricted by the system power consumption and 
low power-harvesting efficiency. From (1), it can be easily 
derived that if the power-harvesting efficiency is doubled and 
the power consumed is halved, the operation range doubles. 

Fig. 2 shows the structure of typical RF-powered systems. 
It mainly consists of the power harvesting and management 
block, analog/RF frontend and digital processing and storage 
block, and the sensors. The rectifier is critical in the system 
design because its PCE directly affects the power budget of the 
entire system. The DC-DC converter in Fig. 2 is an option to 
boost the output voltage of the rectifier, the low dropout 
regulator (LDO) is employed to keep the supply voltage stable 
and less noisy, and the on-chip energy storage (e.g. a capacitor) 
is necessary to enable transient large current. 
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Fig. 2.  RF-powered system structure. 

The second part of the RF-powered system in Fig. 2 
contains some blocks that are necessary only in specific 
applications. For example, the receiver, demodulator, amplifier, 
and the data storage depend on the function of the system. 
Backscattering-based transmitters  are widely used to guarantee 
low-power consumption [5]-[10][17], reaching < 10 pJ/bit [6]. 
When generating the local clock, a trade-off exists between the 
large tuning range, high phase noise of ring oscillators and the 
large area, small tuning range, relatively higher power of LC 
oscillators. Recent works in [6][8] exploit the RF input signal 
as a reference frequency to generate a different carrier  
frequency to transmit the data, which avoids the use of a local 
crystal oscillator, achieves highly integrated low-cost wireless 
transceivers, and also eliminates the “self-jamming” problem 
presented to RFID readers by the backscattering solution. 

III. BENEFITS IN RF-POWERED EMBEDDED SYSTEM DESIGN 
USING STEEP-SLOPE TUNNEL FETS 

Steep-slope TFETs have been proposed to further scale the 
power supply in ultra-low-power applications [11]. A TFET is 
essentially reverse-biased, gated p-i-n tunnel diode with 
asymmetrical source/drain doping, whose on-state drain-source 
current is enabled by gate-controlled band-to-band tunneling, 
and off-state current is determined by the reverse-biased diode 
leakage [11][12][13].  
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Fig. 3.  I-V comparisons for Si FinFET and GaSb-InAs HTFET [12][14][25]. 
 

Steep-slope Switching. The tunneling mechanism makes 
TFET significantly different from CMOS, and the subthreshold 
swing (SS) of TFET is not limited to 60 mV/decade as in 
CMOS. With the utilization of low-bandgap materials (e.g. Ge, 
III-Vs, etc) with a low effective mass (m*), tunnel junctions 
with steep profiles and less defects, and improved gate-control 
from planar structures towards gate-all-around structures, the 
SS can be further improved and the on-state current can be 

TABLE I. RECENTLY REPORTED RF-POWERED SYSTEMS 

 [2] [3] [5] [6] [7] [8] [9] [10] 
Year of publication 2012 2012 2010 2011 2012 2014 2013 2011 

System function Glucose 
sensor 

Battery 
charging 

Temperature  
sensor 

Biomedical 
transmitter 

Neural/EM
G telemetry 

Wireless 
transceiver 

Audio/Image 
transmission 

Wireless 
transceiver 

RF signal 
sensitivity 

15cm @ 
10W EIRP / -12 dBm -6 dBm @ 

918 MHz 
1.5 m @ 
4W EIRP -17.1 dBm 4 m @ 4 W 

EIRP 
14 dBm @ 
900 MHz 

Carrier frequency 1.8 GHz 950 MHz 900 MHz 918 MHz, 
306 MHz 915 MHz 915 MHz, 

2.45 GHz 915 MHz 7.9 GHz 

Modulation scheme FM-LSK / EPC OOK BPSK FSK/OOK BPSK UWB 

Process 0.13 μm 
CMOS 

0.18 μm 
CMOS 

0.13 μm 
CMOS 

0.13 μm 
CMOS 

0.35 μm 
CMOS 

90 nm 
CMOS PCB 0.13 μm 

CMOS 
Power consumption 3 μW / 16 - 33 μW 50.6 μW 1.23 mW 0.85 mW 1.23 mW 10.9 mW 
Energy harvesting 

efficiency 20% (peak) 40% @ -11 
dBm input 36.6% 20-30% 20.6% / 20.6% / 

Data rate / / / 4 Mbps 5 Mbps 5 Mbps 5Mbps 112 Mbps 
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nearly the same as MOSFETs [12][21]-[23]. It has been 
reported that III-V heterojunction tunnel field-effect transistor 
(HTFET) exhibits higher energy efficiency than the start-of-
the-art CMOS technology at a power supply lower than 0.5 V 
[24]. As shown in Fig. 3, for low-power applications with off-
state leakage of 5 nA/um, the HTFET technology in this paper 
shows an average SS of 30 mV/decade over two decades of 
current, and seven times improvement of on-state current over 
20 nm Si FinFETs at a 0.30 V power supply [13][14][25]. Due 
to such characteristics, HTFET has presented a potential for 
low-voltage applications. Simulation results of the energy-
delay performance comparison in Fig. 4 confirm such 
conclusions [25]. For analog applications, steep-slope TFETs 
also achieve a higher gm/IDS than MOSFET, representing a 
larger effective gain per energy step [12][14]. 
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Fig. 4.  32-b Han-Carlson adder energy-delay evaluation for HTFET and Si 
FinFET at 100% activity in (a) and 1% activity in (b) [25]. 
 

Uni-directional Tunnel Conduction. Another HTFET 
feature different from MOSFET is the uni-directional tunnel 
conduction due to the asymmetrical p-i-n structure [12][13]. 
With reduced drain doping to restrain the ambipolar transport, 
when the p-i-n diode is forward-biased within -0.4 V < 
VDS=Vneg < 0 V, the drain-source current is several orders lower 
than the current when VDS=|Vneg|, as shown in Fig. 3. 

The steep-slope I-V curves and the uni-directional tunnel 
conduction give rise to new features for power harvesting and 
mixed-signal circuits. The rest of this section will focus on 
some key blocks of the RF-powered systems with comparisons 
between 20 nm GaSb-InAs HTFET and Si FinFET designs. 
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Fig. 5.  Comparisons between HTFET and Si FinFET one-stage rectifiers. 
 
A. Rectifiers Using HTFET 

Charge-pumps are usually employed to convert the input 
RF signal to a DC output voltage. Considering the amplitude of 
the input RF signal is small when the received power is low, 
small turn-on voltage is one important factor. In conventional 
designs, Schottky diode has thus been utilized because of small 
turn-on voltage [26]. With steep switching, improved ION, and 
uni-directional conduction to reduce the leakage loss, the 

HTFET high-sensitivity rectifier in [13] shows much higher 
PCE than Si FinFET design when the input power is low, as 
shown in Fig. 5. Furthermore, as the RF-powered adder 
number comparison in Fig. 5 reveals, with power-efficient 
digital cells, an HTFET RF-powered system supports much 
more functions than a Si FinFET RF-powered system.  

B. DC-DC Converters Using HTFET 
To boost the power supply voltage, switched-capacitance 

DC-DC converters make use of charge-pumps under the 
control of square waves, rather than the sinusoidal wave in 
rectifiers. As a result, the switching operations in DC-DC 
converters have lower “on-state” switch resistance to achieve 
less voltage drop across the switches, and higher “off-state” 
switch resistance to achieve less current leakage. Therefore, 
reported PCE of DC-DC converters are generally higher than 
that of rectifiers. Using a similar circuit topology of rectifier, 
simulation results in Fig. 6 show that the HTFET DC-DC 
converter is able to convert an input voltage as low as 0.20 V 
with higher than 90% PCE, while the Si FinFET has a PCE 
lower than 60% when the input voltage is lower than 0.35 V. 
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Fig. 6.  Ultra-low-voltage, high-efficiency HTFET DC-DC converter. 
 
C. Low-Power Low-Noise Amplifiers Using HTFET 

Amplifiers are widely used in sensor nodes. For example, 
human brain neuron action capture requires an array of neuron 
signal amplifiers. Considering typical neuron spikes have a 
small amplitude and a frequency range of several kHz, low 
noise and high gain are key specifications of the amplifier 
design [19]. Also, considering many neuron amplifiers are 
integrated on a small chip inside the skull, low-power 
consumption is also extremely important so as not to 
excessively heat the brain. In [27], it is presented that high 
intrinsic gain, driving ability, and output resistance of HTFET 
can be used to achieve superior mixed-signal performance over 
Si FinFET design, at an improved electrical noise performance. 

D. Other Blocks 
It has also been observed that the significant power savings 

in the digital circuits due to low voltage operation are 
particularly valuable in circuits such as successive 
approximation register (SAR) A/D converters which consume 
most of the power in the digital SAR logic and the comparators 
[17]. Our ongoing efforts show that HTFET SAR A/D 
converter achieves approximately 3 times power consumption 
reduction and 6 times size reduction. The simulated effective 
number of bits (ENOB) of HTFET SAR A/D converter also 
outperforms its Si FinFET counterpart.  

IV. FUTURE RF-POWERED SYSTEM DESIGN CHALLENGES  
The advantage of employing HTFET in low-power RF-

powered system has been demonstrated with high power 
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efficiency in both energy-harvesting and signal processing. 
However, RF-powered systems still face the challenge of weak 
and unstable ambient RF signals, under which the operations of 
RF-powered systems may be interrupted. Furthermore, for 
some applications like the glucose sensor on eye contact-lens 
and the neuron sensors on a flying insert, the size and weight of 
the energy-harvesting antenna are restricted, which reduces the 
design space of the energy-harvester to obtain sufficient power. 
This condition makes the design of a RF-powered system with 
a wide operation range much more challenging. 

Further reduction of the digital and analog/RF power 
consumption helps to mitigate the impact of insufficient 
harvested power. Other approaches include the use of hybrid 
power sources, and intermittent operations to gather enough 
energy before the next operation starts. Nonvolatile memory-
based processors are being explored to support such 
intermittent computing systems [28]-[30].  

V. CONCLUSIONS 
In this paper, we have reviewed the ambient RF signals, as 

well as the emerging RF-powered systems and applications. It 
has been confirmed that the power efficiency of the energy 
harvesting and signal processing is the key metric for low-
power RF-powered systems. We have demonstrated the 
benefits of utilizing the TFET characteristics including the 
steep-slope current driving ability, uni-directional tunneling 
mechanism, etc., in the RF-powered systems. A series of key 
blocks, i.e. rectifier, DC-DC converter, low-power amplifier, 
and A/D converter, are also presented with superior 
performance of power-harvesting efficiency, mixed-signal 
performance over Si FinFET designs. The challenges in future 
RF-powered embedded systems are also discussed, along with 
proposed approaches to mitigating the impact of insufficient 
and intermittent harvested power. 
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