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Abstract— Visual analytics applications are becoming 
ubiquitous   and embedded in various systems that we interact with 
daily. Limited power budgets and the need for high performance for 
cognitive visual analytics have led to a three-pronged approach of 
integrating advances in algorithms, architectures and technology 
towards designing next generation vision accelerators. Vision 
applications benefit from increasing processor customization, 
emerging devices and technologies such as Tunnel-FETs and 
Resistive-RAMs, and trends in non-Boolean computing such as 
Cellular Neural Networks (CNNs) and neuromorphic architectures. 
This paper provides an overview of the evolving landscape of vision 
accelerators.  
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I. INTRODUCTION 
 Visual perception, image processing and analytics 

applications have become pervasive across automotive, 
medical, retail, education, agriculture, personal and security 
domains. Algorithms of increasing computational complexity 
are used in these diverse domains to provide enhanced user 
experience. For example, facial recognition algorithms can be 
used in retail stores to identify customers and provide a 
personalized shopping experience. Feature points from edge 
detectors and depth information are used in automatic parking 
assist systems. Video surveillance systems rely on object 
detection and tracking algorithms.  Figure 1 shows a typical 
object recognition pipeline and sample images showing 
application of these algorithms in vehicle navigation 
assistance, personal analytics and surveillance.  

Implementation of such ‘smart’ applications on hardware 
poses severe computational challenges in today’s energy-
limited processors. There have been concerted efforts in 
exploiting new architectures, algorithms and emerging device 
technologies to achieve high performance, energy efficient 
processing. Most image processing tasks demonstrate 
common computational characteristics which can be well-
exploited by a synergistic approach in device, architectural 
and algorithmic design domains. Research efforts in System-
on-Chip architecture have focused on processor 
customization in order to improve performance and energy 
efficiency. Emerging technologies such as Tunnel FETs, 
Resistive RAMs and Spin Transfer Torque (STT) RAMs are 
being proposed as complements, or even as alternatives to 
existing logic and memory technologies, on account of their 

superior characteristics such as power efficiency and density. 
Recent work in the analog computing domain propose models 
for power efficient computation of low level image 
processing tasks. Non-Boolean computation for image 
processing such as Cellular Neural Networks (CNNs) 
implemented using Tunnel-FETs and symmetrical-graphene-
insulator-graphene FETs (SymFETs) offer significant 
advantages over traditional architectural approaches. 
Research trends in each of these design spaces exploit 
characteristics of smart vision tasks to efficiently map 
different classes of applications on these platforms. Figure 2 
shows a taxonomy of image processing and analytics systems 
illustrating design approaches in conventional CMOS 
architectures, emerging devices and technologies, CMOS 
analog computing and non-Boolean computing.  

In this work, we explore trends in such heterogeneous 
architectures and examine the design features that make them 
amenable for efficient implementation of image processing 
applications. We also compare the implementations of 

 
 

 
Figure 1: Sample object recognition pipeline including image 
capture, visual saliency map computation, SURF object 
recognition and matching. Images show application of 
recognition and tracking algorithms in different domains 
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several algorithms on systems that comprise different points 
in the device, architecture and algorithm design space.    

II. CUSTOMIZED CMOS ARCHITECTURES 
With the end of Dennardian scaling [1], recent industry 
and academic efforts in processor architecture have focused 
on processor customization as a solution to improve 
performance and energy efficiency, also taking advantage of 
rising transistor count with technology scaling. Processors 
such as Nvidia’s Tegra 4, Samsung’s Exynos 5, Octa and   
Tilera’s Gx72 [2] employ heterogeneous cores and domain-
specific accelerators for maximum performance and 
improved energy efficiencies for media-rich applications. 
Most computer vision and image processing applications 
have common characteristics such as fine-grain parallelism, 
coarse-grain parallelism, structured memory accesses, 
streaming data access patterns, and pipelined data flow. Most 
customized image processing and analytics systems exploit 
these characteristics to provide high performance and low 
energy processing. The micro-architectural features that 
allow efficient implementation of image processing 
applications are summarized in Figure 3a. In this section we 
describe several classes of heterogeneous architectures used 
in vision systems, as follows. 
 A. GPUs: GPUs offer hundreds of cores for 
computation and are well suited for embarrassingly parallel 
algorithms. Graphics and video processing and scene analysis 
applications can be partitioned into segments processed by 
independent thread blocks, individual threads within blocks 
processing smaller sub-regions in parallel using the CUDA 
programming model. The Single Instruction Multiple Thread 
(SIMT) architecture schedules thread blocks concurrently on 
available multiprocessors, hiding memory latencies using 
abundant thread-level parallelism.   
 B.  Homogeneous multi-cores accelerators: Multi-
core clusters such as Tilera Gx [2], Platform-2012 [3] make 
use of abundant data level parallelism present in tasks such as 
feature extraction. Platform2012 [3] proposes an array of 
CPUs with independent instruction streams and shared L1 
memories with DMA engines. Each image is segmented into 
tiles and the workload is distributed among cores enabling 
parallel computation. Code segments shown in Figure 3b are 
good candidates for such multicore accelerators. Unlike 

SMPs with cache-coherency and memory consistency 
models, DMA engines in Platform-2012 transfer data from 
external memories into shared L1 memories overlapping 
computation on the cores. The Polymorphic Pipeline Array 
(PPA) [4] is a multi-core accelerator aimed at exploiting fine-
grain and coarse-grain parallelism found in streaming 
applications. The PPA consists of a large number of simple 
cores each with multiple processing elements and shared 
scratchpad memories connected using a Mesh-style 
interconnect. Direct connections between register files in 
neighboring cores enable fast sharing and forwarding of data. 
Cores can also be combined logically to create a larger virtual 
core which can speed up inner-loop fine grain parallelism. 
The compiler converts application task graphs into 
instruction schedules using Virtualized Modulo Scheduling 
[4] while the hardware dynamically allocates resources. Run-
time virtualization is possible by transferring instructions 
from a core’s loop buffer to the neighboring core’s loop 
buffer. Applications such as H.264, AAC video encoders 
with coarse-grain pipeline parallelism and inner-loop level 
parallelism show improvement in performance by exploiting 
fine-grain parallelism using modulo scheduling.  
 C. Homogeneous multi-cores with SIMD 
extensions: SIMD extensions such as ARM-Neon [5] save 
computation energy by operating on 128 bit vectors in 
multiple vector lanes of computing units in parallel, rather 
than fetch and process scalar instructions.. Neon instructions 
consist of vector load/store and compute instructions and also 
perform data copying between general purpose registers and 
vector registers. Compilers can autovectorize fine-grain loops 
exploiting data-level parallelism and reducing instruction 
fetches. Code segments with regular control flow such as the  
second one in Figure 3b are good examples.  
 D. Vector Architectures: Traditional vector 
processors map elements on multiple vector lanes or pipes of 
deeply pipelined functional units in a striped fashion, with 
data chaining between units. Special vector memory 
instructions perform strided or indexed memory accesses to 
load data elements from memory into vector registers. Lee et 
al propose a vector-thread architecture, Maven [6], a hybrid 
of vector-SIMD and SIMT architectures. The advantage of 

 
Figure 2. A taxonomy of image processing systems showing trends in CMOS SoCs, emerging devices and non-Boolean computation  



Maven over vector-SIMD architectures lies in the handling of 
irregular control and data flow among vector threads such as 
in Figure 3b. Handling branch divergence among vector 
threads using flags can lead to complicated flag arithmetic 
logic for complex conditions. Maven proposes a SIMT-like 
solution, where the threads with taken branches are buffered 
while the others execute, followed by the divergent vector 
threads. Most classification and recognition-based algorithms 
such as k-means clustering and radix sort which have 
irregular control flows benefit from such architectures.  
 E. Heterogeneous multi-cores: Platforms such as 
ARM big.LITTLE [7] consist of high performance Cortex-
A15 cores and low power/high efficiency Cortex-A7 cores 
connected using a cache-coherent interconnect. Depending 
on workload characteristics in mobile SoCs, big.LITTLE 
software can schedule threads on appropriate cores and 
dynamically track changing performance demands. The 
big.LITTLE cores augmented with Neon SIMD extensions 
can improve performance of compute intensive game 
physics, graphics algorithms etc.  
 F. Heterogeneous multi-cores with application-
specific extensions: Works such as EFFEX [8] and EVA [9] 
have application-specific accelerator extensions for feature 
extraction, tightly coupled to simple and complex cores. 
These works profile several feature extraction and 
classification algorithms to identify common kernels or 
computation patterns among them. Specialized processing 
elements to accelerate these kernels are tightly coupled to the 
processor. To access a rectangular region or tile of pixels as 
is commonly the case with feature extraction algorithms, a 
patch memory architecture is used. This architecture uses a 
software re-arrangement of a 2-d data tile into a single 
DRAM row. Accesses to consecutive 2-d tiles are serviced by 
the DRAM row buffer [8].  EFFEX offers 12X speed-up over 
an ARM core for HoG feature extraction algorithm.  
 G. Multi-cores with shared accelerators and shared 
memories: Works such as SARC [10], CHARM [11], AXR-
CMP [12], Cogniserve [13] propose a system with multiple 
cores and shared accelerators. Cong et al [11,12] propose a 

system with general purpose cores, shared L2 cache banks 
and shared composable accelerator blocks, improving 
accelerator utilization. A core’s request to use an accelerator 
is processed by a global controller which composes an 
accelerator from building blocks and allocates it to the core. 
Each accelerator building block island has a dedicated scratch 
pad memory and a DMA engine to transfer data into local 
scratch pads from L2, which can be overlapped with 
computation. The accelerator operations can be sequenced or 
chained by transferring data from one accelerator into another 
directly. Each accelerator has a TLB to work with virtual 
addresses. A large number of algorithms such as FAST corner 
detection [14], Canny edge detection, Face recognition using 
Local Binary Patterns [15], disparity map computation can be 
broken into stages with completely streaming memory 
access, with data flow from one stage to another enabling 
accelerator operations to be chained. In addition, these 
algorithms have a number of similar compute kernels 
enabling the design of accelerator building blocks.                   
 H. Custom Accelerators: A large number of 
dedicated architectures have been developed for a specific 
application and prototyped on FPGAs. For example, Bae et. 
al [16] describe a platform for AIM visual saliency system 

 
Figure 4: Ratio of output frames per second over that of an ARM 
core for FAST corner detection algorithm TCA = Tightly Coupled 
Accelerators; LCA=Loosely Coupled Accelerators 
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Figure 3a: Summary of architectures useful for image 

Architecture Architectural features Most suitable Applications
GPUs Hundreds of cores for coarse & fine grain parallel 

computation; SIMT architecture
Graphics Rendering, Game 
physics, Object /face 
Detection & Tracking

General purpose SMP Multiple cores for coarse-grain parallelism Sequential phases
Homogeneous multi-
core accelerators

Multiple cores with fine-grain workload distribution; 
Optimized data flow interfaces for core-core 
communication; Optimized external memory transfers in 
parallel with computation

Feature extraction, Video 
encoding algorithms, 
Filtering, Edge detection

Multi-core SIMD 
extensions

Vectorized operations on data in parallel accelerating
fine-grain inner-loops; Reduction in instruction count and 
fetch bandwidth for cores

Kernels such as convolution, 
gradient in feature extraction 
applications with regular data 
and control flow

Vector-Thread 
Architectures

Hybrid vector SIMD-SIMT; Buffers to handle branch 
divergence among concurrent vector thread lanes  

K-means clustering, R-sorting 
with irregular control flow

Heterogeneous multi-
cores with Tightly  
Coupled Accelerators 
(TCA)

Big and small cores with tightly coupled accelerator units 
to compute common kernels; Memory interfaces for 
regular data access patterns

Feature extraction and object 
detection , classification 
algorithms 

Multi-cores with shared 
Loosely Coupled 
Accelerators (LCA) and 
memories

Shared accelerators improving utilization; composable
specialized accelerators to offload computation 
improving performance and energy savings; Operation 
sequencing and chaining; Optimized external memory 
transfers and data flow between cores and accelerators

Object/Face recognition, 
tracking, feature extraction, 
filtering and image 
processing, video encoding 
algorithms

 
Figure 3b: Code characterization for heterogeneous mapping 
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with an input camera interface prototyped on a Virtex-6 
Xilinx FPGA and Park et. al [17] proposes a custom 
accelerator for HMAX.    
Evaluation: Figure 4 shows the performance comparison for 
different CMOS architectures in terms of frames per second 
for the FAST corner detection algorithm [14]. The values are 
normalized over the performance of a 1GHz ARM core 
obtained using the GEM5 full-system simulator. Performance 
of FAST for homogeneous multi-core system is obtained by 
mapping the application on Platform-2012 [3]. The GPU used 
is the Nvidia GTX 280. Reported results from [9] were used 
for evaluating the EVA platform. We designed streaming 
accelerators to compute the basic primitives in FAST, such as 

sum of center-surround differences and non-maximal 
suppression. 4 out-of-order ARM CPUs were used for control 
flow between the accelerators. The multi-core system with 
shared accelerators running at 500MHz, was simulated using 
GEM5.  The fully customized accelerator was designed with 
datapath and control optimized for FAST. 

III.  ANALOG IMAGE AND VIDEO PROCESSING 
Challenges of further scaling down the threshold voltage 

increasing leakage, as well as increasing uncertainty in device 
behavior are rendering real-time processing difficult. These 
challenges are exacerbated due to the rapidly increasing 
amount of the “Big Data” from images and videos. CMOS 
analog signal processing (ASP) of images becomes an 
attractive alternative by taking advantage of massive 
parallelism and unique analog circuit and architecture design 
[18]. Recently, a 1015 operations/watt analog deep machine-
learning engine composed of an 8x4 array of parallel 
reconfigurable analog computation cells (RAC) was 
presented in [19], which mimics the hierarchical presentation 
of information in the human brain to achieve robust 
automated feature extraction with the accuracy comparable to 
the baseline software simulations. In [20], a mixed-signal 
VLSI array with 1.1 TMACS (1012 multiply-and-accumulates 
per second) per mW is presented, which is used in 
applications like pattern recognition and data compression. 

In addition, several analog-based systems facilitate 
biological computing techniques by leveraging emerging 
technologies. Architectures such as IFAT [30] and NeuroDyn 
[31], which employ a conductance-based model of the 
spiking neurons found in the brain can enable non-traditional 
computation of problems that may be difficult or inefficiently 
solved using digital systems.  The recent IBM SyNapse chip 
[45] has demonstrated unprecedented power efficiencies by 
using a brain-inspired neuron-based processing paradigm. 

IV. ROLE OF EMERGING TECHNOLOGIES IN VISION 
SYSTEMS 

The increasingly significant role played by device 
researchers has led to the adoption of several promising 
device technologies in the design of new architectures for 
vision algorithms. Most of these new technologies exhibit 
physical characteristics that enable performance and power 
efficiency superior to existing CMOS-based architectures. 

A.  Magneto-metallic spin neurons: These devices 
have been proposed for the design of associative memory 
array pattern matching applications.  These devices are highly 
energy efficient and can operate at voltages as low as 10mV 
[21]. These devices can operate with analog signals to 
determine the degree of correlation between images in terms 
of the magnitude of output voltage. A resistive crossbar 
memory designed using spin neurons is capable of highly 
energy efficient in-memory processing. Spin neurons can be 
used to realize ultra-low energy analog systems for various 
image processing algorithms [37]. These algorithms include 
edge detection, halftone compression, and digitization.  

B. Patterned magnetic media: In nano-magnet logic 
(NML) devices, the magnetization state is used to represent 
binary information [22]. For example, arrangements of 
devices with perpendicular magnetic anisotropy could be 
used for image edge detection [23]. In [24], the authors report 
how a 2-D array of NML devices with perpendicular 
anisotropy can be used to implement an image filtering 
algorithm to remove noise from a black and white image.   

C. Emerging memory technologies: There have been 
works that demonstrate the design of memories used for 
associative computing. Associative memories (AMs) are 
content-addressable memories that have important 
applications in pattern recognition, feature extraction, and 
classification. Several emerging memory technologies such 
as Phase Change Memory (PCM) and Spin Torque Transfer 
(STT-RAMs) [25] have been shown to be viable device 
options. These designs are optimized for fast lookup and 
hashing functionalities, which are essential in several signal 
and image processing applications. For every input vector, 
the task of the AM circuit is to find the memory vector that is 
the closest to the input vector using a distance metric such as 
the Euclidean norm. Transistor technologies such as 
symmetrical-graphene-insulator-graphene FETs (SymFETs) 
and bi-layer pseudospin FETs (BiSFETs) have I-V 
characteristics that are quite different from classical FETs. 
These characteristics make them suitable for approximating 
analog and multi-valued systems. As reported in [26], a 
SymFET-based AM has been designed and compared with an 
active synapse simulated in 0.13μm CMOS process. For fair 
comparison, a peak-to-valley ratio similar to that of the 
SymFET-based approach was targeted. Each CMOS-based 
synapse had 23 transistors (as opposed to 2 SymFETs) and 
consumed 76μW on average. In the SymFET design, the 
average power per synapse was 7.2μW. 

Resistive Switching Memories, commonly known as 
ReRAMs, are considered to be promising candidates for 
future nonvolatile memory applications on account of their 

 
Figure 5:  Comparison between L2 norm and oscillator response 



switching speed, scalability with technology and 
compatibility with existing CMOS technology. In [27], the 
authors demonstrate the similarity between a biological 
synapse and its electronic equivalent using a metal oxide 
ReRAM. In these devices, the resistance is varied gradually 
by controlling the input pulse amplitudes. In order to 
demonstrate adaptive learning in a neural network, these 
electrical    synapse devices are equipped with spike-timing-
dependent plasticity (STDP) functionality, a learning 
technique in which output depends on input data rate. More 
recently, Magnetic RAMs and PCMs [28] have also been 
adapted to similar analog architectures to enable efficient 
implementations of synaptic weights for the STDP exhibited 
by biological neurons. In [29], the authors use these learning 
schemes for recognition of characters in a noisy background. 

D. Tunnel-FET based Accelerators: In addition to 
being regarded as a promising replacement to low voltage 
CMOS technology in general purpose processors, Tunnel 
FET-based customized accelerators have also been shown to 
demonstrate significant energy and performance benefits 
over conventional transistor designs. In [36], the authors have 
realized TFET-based accelerators used in computer vision, 
such as pattern matching engines. These accelerators show a 
6X improvement in energy over an iso-voltage CMOS and a 
30% power benefit over an iso-performance CMOS design. 

E. Non-Boolean Computing: Problems such as 
image/pattern recognition and visual saliency can consume 
huge computational resources in the Boolean processing 
framework. This motivates the study of non-Boolean 
computing approaches such as locally coupled oscillators, 
Cellular Neural Networks (CNN) and memristor-based 
approximate computing. 
i) Locally coupled oscillators: [32] examines the use of 
locally coupled oscillators in edge detection and saliency. 
When oscillator devices like the resonant body transistors 
(RBTs) [33], spin-torque nano-oscillators (STNOs) [34] and  
Metal Insulator Transistion (MIT) materials are coupled with 
each other, their outputs will finally settle down to the same 
phase or frequency after a settling time which depends on the 
difference in the input voltages to the device. Recent research 
on a vanadium dioxide (VO2) MIT material, integrated with 
MOSFET, has shown the capability of improved image 
processing quality with ~20X lower power consumption over 
a CMOS edge/saliency detection accelerator [35]. The 
inherent device characteristics are observed to be similar to a 
distance norm of (X0.5-Y0.5)2.  Figure 5 shows the comparison 
between an L2 distance norm, (x2-y2)0.5 for a range of input 
values, and the response of the oscillator to the same inputs. 
Based on this figure, it is clear that the oscillators exhibit a 
comparable distance metric while the difference (x-y) is 
moderately small, with the approximation falling off more 
abruptly as this difference increases.  
ii) Cellular Network-inspired computing: Cellular Neural 
Networks (CNNs) belong to a special class of Artificial 
Neural Networks called continuous-time Hopfield Networks. 
In these CNNs, all processing elements are typically 
connected to just nearest neighbors – which can simplify 

implementation. Quantitatively, for complex, 2-d image 
processing functions, a CNN-based processor with an area of 
1.4cm2 and a power budget of 4.5 W could match the 
performance of the IBM Cellular Supercomputer with an area 
of 7  m2 and a power budget of 491 KW [38]. 

In spite of these advantages, existing CNN 
implementations have several key limitations. For instance, 
the resolution of a state-of-the-art CNN architecture is still 
limited.  This is because, although, an image to be processed 
via a CNN may typically have multiple gray levels, the output 
is typically binary. Recent FPGA-based approaches from 
Altera-Eutecus [40] are capable of processing high definition 
video. However, this comes at a cost of reduced functionality, 
increased power and reduced throughput.   

Ongoing research also suggests that emerging 
technologies can also play an important role in improving the 
power/efficiency of CNNs.  Non-linear devices such as 
resonant tunneling diodes (RTDs)  [41], and more recently 
TFETs [42] have been introduced into CNN circuitry to solve 
binary classification problems by eliminating the required 
output transport function hardware.   
 Additionally, designs for TFET-based CNNs have also 
been proposed that could be used to solve more complex, 
multi-valued classification problems. When studying a 
slippage detection problem, where tactile data is treated as an 
image, a conventional binary CNN requires 5 processing 
steps (i.e., template operations) and 2 hardware data paths 
[43]. Alternatively, a TFET-based circuit with ternary outputs 
can solve the same problem with just 3 computational steps 
and 50% less hardware. Further, a ternary CNN cell is 
expected to dissipate 70X less energy for the detection task. 

  In CNNs, most template operations leverage linear 
relationships between cells.  However, non-linear templates 
often reduce the number of programming steps required to 
solve a particular problem, when compared to an algorithm 
that employs only linear templates.  Initial work [44] suggests 
that non-linearities associated with SymFETs can be used to 
efficiently realize non-linear templates.  As an example, to 
perform thresholding on an interval using a band pass filter, 
three sequential linear operations are needed.  The same task 
can be accomplished with a single template operation when 
SymFETs are employed. Thus, there are two potential 
sources of simultaneous improvement – a reduction in 
template operations and hardware complexity required to 
realize non-linear operations. 
iii) Memristor-based Approximate Computing: As processing 
power budgets continue to tighten, non-traditional techniques 
such as approximate computing are becoming more popular. 
In this paradigm, rather than trade chip area or performance, 
architectures leverage the accuracy of computation for saving 
power. Memristor-based computing architectures exploit the 
non-determinism of resistive memories to produce efficient, 
high performance systems, which yield approximate, rather 
than definitive results. These systems are shown to be capable 
of highly power-efficient computation, consuming up to 
300X less power and over 400X improved performance 
compared to general purpose CPUs [39].   



Evaluation: Figure 6 shows the power per output pixel, for 
various technology-based accelerators described in this 
section when implementing a pattern matching algorithm. A 
distance compute accelerator was designed and synthesized 
using Synopsys tools with the Synopsys SAED 32nm 
libraries. We obtained power from Synopsys design compiler 
and scaled it down to 10nm technology using factors reported 
in [1] and projections from ITRS (International Technology 
Roadmap for Semiconductors). We synthesized the TFET 
accelerator using the 22nm library described in [36] and used 
TCAD simulations to obtain corresponding power numbers 
at the 10nm node. Results for the spin neuron-based 
implementation were reported in [21]. 

V. CONCLUSION 

 This paper provides a comprehensive survey of the various 
techniques used to design image processing systems. From 
this work, it is evident that the potential for improvements in 
performance and energy efficiency lies at the convergence of 
advances in device technology, analog and digital circuit 
design and system architectures and algorithms. 
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Figure 6: Comparison of power per output pixel across different 
technology-based systems for a pattern matching accelerator 
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