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Abstract—With the advent of the era of trillion sensors, solar-
powered sensor nodes are widely used as they do not require
battery charging or replacement. However, the limited and
intermittent solar energy supply seriously affects deadline miss
rate (DMR) of tasks. Furthermore, traditional solar-powered sen-
sor nodes also suffer from energy loss of battery charging and
voltage conversion. Recently, a storage-less and converter-less
power supply architecture has been proposed to achieve higher
energy efficiency by removing the leaky energy storage and dc
voltage conversion. Without energy storages, a node using inter-
task scheduling is more sensitive to solar variations, which results
in high DMRs. This paper proposes an intra-task scheduling
scheme for the storage-less and converter-less solar-powered sen-
sor nodes, whose features include power prediction based on
classified solar profiles, a trigger mechanism to select scheduling
points, an artificial neural network to calculate task priorities
and a fine-grained task selection algorithm. Experimental results
show that the proposed algorithm reduces DMR by up to 30%
and improves energy utilization efficiency by 20% with trivial
energy overheads.

Index Terms—Deadline miss rate (DMR), energy utilization
efficiency, intra-task scheduling, storage-less and converter-less
nonvolatile sensor nodes.
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I. INTRODUCTION

W IRELESS sensor nodes are widely used, such as
structure health monitoring (SHM) [1], body motion

analysis [2], forest watershed deployment [3] and indus-
trial control [4]. In most cases, sensor nodes are powered
by batteries, where frequent replacement or recharging is
needed. In the coming trillion sensor world [5], maintaining
such a great quantity of sensor nodes becomes a prohibitive
task both in time and cost. Energy harvesting techniques
are promising to reduce the maintenance costs and pro-
long the operating time of sensor nodes. Among common
energy harvesting sources, such as solar, thermal, wireless,
and vibration energy [6], solar energy provides the high-
est power density and hence solar-powered sensor nodes
are the most widely used. Since the solar energy is limited
and intermittent, it is difficult to guarantee that the dead-
line of each task can be satisfied when the solar power
is used as the only energy supplier. It is no surprise that
plenty of energy-driven task scheduling techniques are investi-
gated to minimize deadline miss rate (DMR) in solar-powered
systems.

Most of the existing task scheduling techniques [7], [8] per-
form well for sensor nodes with the “harvest-store-use” [9]
supply architecture [see Fig. 1(a)]. This supply system con-
tains dc–dc converters and energy storage components, such
as batteries, super capacitors, and so on. The converters regu-
late and stabilize the supply voltage at a required level and the
energy storages work as energy buffers to relieve the impacts
of the solar power variations. The load system contains one
or multiple processing elements (PEs) to match the load con-
sumptions to the power profiles [10]. However, it is pointed
out that such an architecture suffers from low energy effi-
ciency [11], due to the nontrivial energy loss caused by the
dc–dc converters and the charging/discharging procedures of
capacitors.

Recently, a storage-less and converter-less supply system for
the solar-powered sensor nodes [12], [13] is developed, which
achieves up to 23% higher energy efficiency than the harvest-
store-use architecture. However, since there is no energy
storage component in the new architecture, the power supply is
not guaranteed to be stable but intermittent. Meanwhile, exist-
ing scheduling algorithms are inter-task methods and cannot
be interrupted during executions. As a result, these algorithms
often cause a high DMR when the power supply fails (even
temporarily), leading to more task failures or rescheduling
operations.

0278-0070 c⃝ 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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(a)

(b)

Fig. 1. Architectures of the solar-powered sensor nodes. (a) Harvest-store-use
architecture. (b) SCSN architecture.

In this paper, we propose a solar power prediction assisted
intra-task scheduling for the storage-less and converter-less
solar-powered sensor node (SCSN). Compared with the inter-
task scheduling, the intra-task scheduling, which is a form of
preemptive scheduling, can adjust tasks at any time and closely
follow the solar variations. To the best of our knowledge, this
is the first approach with such capabilities. The experimental
results show the proposed algorithm reduces the DMR by up
to 30% and improves the energy efficiency by 20% on average.
The main contributions are listed as follows.

1) Formulating the system model of the SCSN architecture
as shown in Fig. 1(b), which contains a storage-less and
converter-less supply system with several nonvolatile
PEs (NPEs) (e.g., FeRAM-based [14] or ReRAM-
based [15]–[17] NPEs) for load matching.

2) Providing a schedulability analyzing method and an
optimal DMR estimation algorithm.

3) Proposing an integer nonlinear programming (INLP)
solution for the optimal intra-task scheduling.

4) Developing an online intra-task scheduling algorithm
on the SCSN architecture, consisting of classified solar
power prediction, a trigger mechanism, an artificial neu-
ral network (ANN) to calculate task priorities, and a task
selection method.

5) Validating the proposed model and algorithm on a proto-
type and comparing it with several up-to-date scheduling
methods.

The rest of this paper is organized as follows. Section II
presents the motivation and challenges of the intra-task
scheduling. Section III introduces the system model and
Section IV analyzes the schedulability and provides an opti-
mal DMR estimation method, as well as an INLP formulation
for optimal scheduling. The online algorithm is illustrated in
Section V. A prototype is used to validate the system model
and the online algorithm in Section VI. Section VII shows the
experimental results via simulations. Section VIII discusses
the related work and Section IX concludes this paper.

II. OVERVIEW

This section first gives a motivational example for intra-task
scheduling on the SCSN architecture and then discusses the
challenges.

Fig. 2. Motivation for intra-task scheduling on the SCSN architecture.

A. Motivation

Compared with the inter-task scheduling, the intra-task one
adjusts the task in a more timely and fine-grained way. Fig. 2
compares two approaches above on the SCSN architecture.
Given a set of periodic tasks (τ1–τ6) with corresponding dead-
lines (D1–D6), the tasks assigned on each NPE are presented
on the top left corner of Fig. 2, where one task can only be
executed on one NPE. The task dependence is given on the
top right corner, where data dependency exists if there is an
arrow between two tasks.

Since tasks cannot be interrupted in the inter-task schedul-
ing, no new task can be rescheduled unless the current one is
completed. When there is a solar power drop, the task execu-
tion time increases and five tasks miss their deadlines (DMR:
83.3%), because rescheduling happens too late due to the long
delay to finish the previous task. On the other side, the intra-
task scheduling adjusts tasks in time once variations of solar
power or changes of task status happen. For example, task τ1
is stopped during execution at t2 when solar power decreases.
Task τ2 can continue to be executed and catch its deadline
with the power saved by stopping τ1, since task τ2 has a loose
deadline than τ1. Moreover, in order to complete task τ3 and
τ4 in time, task τ5 is executed intermittently according to solar
variations from t1 to t5 and is not completed at last. In this
way, DMR is reduced to 50.0% using the intra-task scheduling
scheme.

Solar power prediction is another critical factor to reduce
DMR in the intra-task scheduling. Previous prediction
methods, such as exponentially weighted moving average
(EWMA) [18] and weather conditioned moving average
(WCMA) [19]), are effective to estimate common solar pro-
files in average cases. Given a large quantity of real solar
data [20], Fig. 3 shows different types of solar profiles
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(a) (b)

Fig. 3. Types and appearance probabilities of solar profiles in a period.
(a) Time in a period (min). (b) Type of solar profiles in a period.

Fig. 4. Intra-task scheduling with different prediction methods.

with different appearance probabilities. Fig. 4 compares the
scheduling effects of using classified solar profiles based pre-
diction with that of using average-case prediction. As we can
see, task τ5 is thoroughly abandoned and τ6 is completed,
which reduce DMR to 16.7%. Therefore, intra-task scheduling
scheme assisted by classified solar profiles based prediction is
more promising.

B. Challenges

Since the intra-task scheduler can execute tasks at any time
slots in a period, design space increases exponentially with the
number of tasks and time slots. The huge optimization space
brings three major challenges.

1) When to start a scheduling procedure?
2) How to reschedule the tasks during execution?
3) How to predict solar profiles more accurately?

To solve the problems, we extract the system model in
Section III. We develop a theoretical analysis for offline
intra-task scheduling, including the schedulability analysis,
the optimal DMR estimation method and an INLP formu-
lation for the optimal scheduling in Section IV. Finally, an

TABLE I
PARAMETERS AND VARIABLES OF THE MODEL

efficient online intra-task scheduling algorithm is proposed in
Section V.

III. SYSTEM MODELING

This section describes the system modeling for the intra-task
scheduling, including task parameters, system parameters, and
scheduling variables.

A. Task Parameters

Table I presents the parameters and variables of the sys-
tem model. This paper targets a set of periodic tasks executed
on the SCSN architecture. A directed acyclic graph G(V, E)

describes the tasks and their dependencies, where the nodes in
V denote the tasks set and the edges in E represent the depen-
dencies. In V , N tasks ({τ1, τ2, . . . , τN}) are executed by K
NPEs. For each task (τi), there are three parameters: 1) Di is
the periodic deadline of τi in each period; 2) Li is the required
execution time; and 3) Pi is the power consumption of τi. Note
that tasks executed in one period are independent of those in
others. In E, Ei,j denotes the data dependency from τi to τj.
That is, Ei,j = 1, if τj depends on the results of τi.

B. System Parameters

The system contains four parameters. A period is denoted
as T = {1, 2, . . . , t, . . . , |T|}. It has |T| time slots and the
length of each time slot is "t. The time slot is the smallest
unit for intra-task scheduling and tasks can be adjusted at the
beginning of each time slot. Ps(t) denotes the average solar
power in the tth time slot. Ak (k ∈ [1, K]) is a task set including
the tasks executed on the kth NPE. Each NPE executes one
task at a time.

C. Scheduling Variables

We define the scheduling variables as follows. xi(t) is the
independent 0-1 variable, which denotes the scheduling results
for τi in the tth time slot. That is, xi(t) = 1, if τi is executed.

Based on xi(t), we propose two intermediate variables: pi(t)
and lrem

i (t). pi(t) is the average power consumption of τi in
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the tth time slot which is calculated as follows:

pi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if xi(t) = 0

Pi, else if Ps(t) ≥ ∑N
k=1 xk(t) · Pk

Ps(t) · Pi∑N
k=1 xk(t)·Pk

, otherwise
(1)

where pi(t) = 0, if τi is not executed; pi(t) = Pi, if the solar
power is sufficient for load consumption; and pi(t) is a fraction
of the solar power (Ps(t)) consumed by τi (less than Pi), if the
solar power is not sufficient in the tth time slot.

lrem
i (t) is the remaining execution time of τi at the begin-

ning of the tth time slot, which is calculated via the energy
consumption as follows:

lrem
i (t) = Li − "Ei(t − 1)/Pi

"Ei(t − 1) =
t−1∑

m=1

xi(m) · pi(m) · "t (2)

where "Ei(t − 1) and "Ei(t − 1)/Pi are total energy con-
sumption and the total execution time of τi during the last
t − 1 time slots, respectively. Thus, lrem

i (t) = Li, if τi has
never been executed and lrem

i (t) = 0, if τi is completed.
In addition, we define a function θ() to denote whether τi

misses its deadline or not

θ
(
lrem
i (⌈Di/"t⌉)

)
=

{
1, if lrem

i (⌈Di/"t⌉) > 0
0, otherwise.

(3)

τi misses its deadline, if lrem
i (⌈Di/"t⌉) > 0; otherwise, τi

meets its deadline and the tasks will be included in DMR
calculation.

IV. OFFLINE THEORETICAL ANALYSIS

AND INLP FORMULATION

This section first analyzes the schedulability with the
changeable energy supply. The optimal DMR estimation for
the nonschedulable cases is then presented. After that, an INLP
formulation for optimal intra-task scheduling is developed.

A. Schedulable Condition for Energy Harvesting
Sensor Nodes

The tasks are schedulable if all of them meet deadlines
under the given constraints, such as energy, computation
resource, etc. Previous work had well studied the schedulabil-
ity of deterministic scheduling problems [21]–[23]. However,
it is absent for energy harvesting sensor nodes, where power
profiles are unknown. We propose a schedulable condition in
a period for energy harvesting sensor nodes as follows:

∀t ∈ [1, |T|],
t∑

m=1

Es
max(m) ≥

N∑

i=1

Ec
i (t) (4)

where Es
max(m) is the maximum energy supply at the mth time

slot and Ec
i (t) is the energy requirement of task τi at the tth

time slot. It means that the accumulated energy supply should
always satisfy the total energy requirement of tasks, whose
deadlines are approaching, at any time slot t. Es

max(m) (m ∈
[1, |T|]) is calculated as follows:

Es
max(m) = min

(
Ps(m), PNPE

const, Pc
max(m)

)
· "t (5)

where Ps(m) is the harvested solar power, PNPE
const is the total

peak power of all NPEs, and Pc
max(m) is the maximum power

to execute the tasks which can be started at the present time
slot. Es

max(m) is limited by above three parameters due to the
following reasons. First, Es

max(m) is always smaller than the
harvested solar energy, as there is no other energy source.
Second, it cannot be larger than PNPE

const, since PNPE
const is the maxi-

mum power which the node can draw. Third, the schedulability
is also constrained by the task dependence, which is charac-
terized by Pc

max(m). It implies that the schedulability cannot
be met due to the computing resource and task dependance
constraints, even if the harvested solar power is large enough
to supply all tasks when the deadlines are approaching.

In the following, we calculate PNPE
const and Pc

max(m), respec-
tively. PNPE

const is a constant value given by

PNPE
const =

K∑

k=1

maxi∈Ak(Pi) (6)

where max(Pi) is the maximum power consumption of the
task executed on the kth NPE. Pc

max(m) is the maximum power
requirement of all the tasks in the mth time slot. It is calculated
as follows:

Pc
max(m) =

N∑

i=1

exei(m) · Pi

exei(m) =
{

1, if ⌈Ri/"t⌉ ≤ m ≤ ⌈Di/"t⌉
0, otherwise

(7)

where exei(m) denotes whether a task can be executed in the
mth time slot. exei(m) = 1, means task τi can be executed
during the period from its start time to the deadline; at other
times, exei(m) = 0. In (7), Ri (i ∈ [1, N]) is the start time
of task τi. Ri = 0, if τi does not depend on any tasks, which
means τi can start to be executed at the beginning of the period;
otherwise, we estimate Ri as follows:

Ri = max
(
Lk · Ek,i

)
(8)

where k ∈ [1, N]. Ri is equal to the longest execution time
of the tasks (τk), on which τi depends. This value is equal to
the actual start time of τi, if all of these tasks have no data
dependencies; otherwise, Ri is earlier than the actual start time.

The energy requirement Ec
i (t) (t ∈ [1, |T|]) is calculated as

follows:

Ec
i (t) =

⌊
1 + t · "t − Di

|T| · "t

⌋
· (Li · Pi) (9)

where Ec
i (t) = Li · Pi, if the deadline of task τi arrives

(t ·"t ≥ Di) and the energy requirement needs to be satisfied;
otherwise, Ec

i (t) = 0.
According to (4), we can draw the curve of

∑t
m=1 Es

max(m)

and
∑N

i=1 Ec
i (t) in Fig. 5. In Fig. 5(a), the tasks are schedulable

since the schedulable condition is satisfied. In this situation,
one or more scheduling methods to meet deadline constraints
exist and the DMR is zero. However, the tasks are not
schedulable in Fig. 5(b), since the energy violation happens.
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(a) (b)

Fig. 5. Relationship between energy supply and requirement. (a) Schedulable
case. (b) Nonschedulable case.

B. Analytical DMR Estimation

When the tasks are not schedulable, we can esti-
mate the optimal (lowest) DMR by omitting some tasks
to eliminate energy violations. We use a set T ′ =
{t′|Energy violation happens} to store the time slots, where
an energy violation happens. Thus, the energy violation s(t′)
in the t′th time slot can be described as follows:

s
(
t′
)

=
N∑

i=1

Ec
i
(
t′
)
−

t′∑

m=1

Es
max(m) (10)

where s(t′) is equal to the extra energy requirement in the
t′th time slot, if the energy supply is less than the require-
ment; otherwise, s(t′) = 0. The violation reduction ("si) by
removing a task τi (i ∈ [1, N]) is calculated as follows:

"si =
∑

t′∈T ′
min

(
Li · Pi, s

(
t′
))

· σ
(
Di − t′ · "t

)

σ
(
Di − t′ · "t

)
=

{
1, if Di ≤ t′ · "t
0, otherwise

(11)

where "si is equal to the sum of the minimum value between
its energy requirement (Li · Pi) and the energy violation (s(t′))
in the t′th time slot only if its deadline Di is no later than the
end of the slot (t′ · "t). Based on the definition of s(t′) and
"si, we propose a theorem to estimate the optimal DMR.

Theorem 1: The lower bound of the optimal DMR is
|V ′|/|V|, where |V ′| and |V| are the numbers of the tasks in
V ′ and V , respectively. V represent the original task set to be
executed and V ′ is the set containing the tasks removed from
V with the following method. Remove the task with the maxi-
mum "si without any dependent tasks in V and add it into V ′.
Randomly select one task when there is a tie. Update s(t′) and
"si and repeat the step iteratively until no energy violations
exist for the remaining tasks.

Proof: Without losing generality, suppose that a smaller
DMR (|V ′| − 1)/|V| can be achieved if we remove a dif-
ferent task τj to eliminate all energy violations in the last
second iteration, while the task selected by Theorem 1 is τi.
It is guaranteed that "si ≥ "sj by Theorem 1, because τi
is the task to achieve the maximal value of violation reduc-
tion. Since we still need one more task to be removed from
V after τi, we have "si <

∑
t′∈T ′ s(t′). However, we have

"sj = ∑
t′∈T ′ s(t′), since the remaining tasks in V are schedu-

lable after removing τj. Therefore, it leads to the conclusion

"si < "sj, which is inconsistent with "si ≥ "sj. Hence we
prove that the assumption does not hold.

Theorem 1 enables us to estimate the optimal DMR when
the original tasks are not schedulable. When there is no task
dependence, the theorem provides the accurate optimal DMR
estimation. When the task dependence exists, it provides a
theoretical lower bound of the optimal DMR, because the
start time of the tasks estimated by (8) may be smaller than
the actual values. The complexity of the DMR estimation is
linear O(N), where N is the number of tasks. Thus, it is
suitable for fast optimal DMR estimation for design space
exploration in large-scale cases. Although the theorem pro-
vides an efficient way to estimate the optimal DMR, we still
need algorithms to obtain the scheduling solution, which is
presented in Section IV-C.

C. INLP Formulation for Intra-task Scheduling

We develop an offline formulation for the optimal intra-
task scheduling results. Based on the parameters and variables
defined in Section III, the formulation can be developed as
an INLP model as follows. Without loss of generality, the
objective is to find the optimal scheduling results for all the
tasks in a period ({xi(m)}), which minimizes the DMR from
any time slot t (t ∈ [1, |T|]) to the end of a period. The
inputs consist of the given solar power ({Ps(m)}, m ∈ [t, |T|])
and the current task status at the beginning of the tth time
slot ({lrem

i (t)}). The outputs are the optimal scheduling results
({xi(m)}, m ∈ [t, |T|])

objective: min
N∑

i=1

θ(lrem
i (Di))/N (12)

subject to:

1) task dependence constraint

lrem
j (m) = Lj, if

N∑

i=1

Ei,j · lrem
i (m) > 0 (13)

2) solar power constraint
N∑

i=1

xi(m) · pi(m) ≤ Ps(m) (14)

3) task energy constraint
|T|∑

m=t

pi(m) · "t ≤ Pi · lrem
i (t) (15)

4) NPE resource constraint∑

∀i∈Ak

xi(m) ≤ 1 (16)

where i, j ∈ [1, N], m ∈ [t, |T|] and k ∈ [1, K]. There are
four constrains in the formulation. The task dependence con-
straint (13) means that τj starts only if all its depending tasks
are completed. The solar power constraint (14) means that the
load power is no more than the solar power. The task energy
constraint (15) means that the remaining energy consumption
of τi cannot be violated. The NPE resource constraint (16)
means that an NPE can only run one task at the same time.

The complexity of the formulation is O(2N·(|T|−t+1)), where
N is the number of tasks and |T| denotes the number of time
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Fig. 6. Diagram of the online intra-task scheduling algorithm.

slots in a period. It can be solved by a nonlinear programming
solver such as LINGO. In addition, the optimal DMR serves as
the exact lower bound in the experiment. However, the optimal
results are obtained offline with the known solar power and
it cannot be directly applied for online scheduling. Thus, we
develop an online intra-task scheduling algorithm in Section V.

V. ONLINE SCHEDULING ALGORITHM

This section presents the diagram of the online intra-task
scheduling on the SCSN architecture and then introduces its
key components.

A. Online Intra-task Scheduling Algorithm

To solve the challenges in Section II-B, we design the online
intra-task scheduling algorithm based on the following ideas.

1) Considering the scheduling points, we propose a trig-
ger mechanism to choose the suitable scheduling points
based on the current solar power and task status.

2) Considering the scheduling strategy, we calculate the
real-time task priorities for online task selection.

3) Considering solar power prediction, we classify the
period-level solar profiles into several types based on
their basic shapes and develop a classified solar power
prediction method.

Fig. 6 presents the diagram of the proposed scheduling
algorithm, which contains three parts: 1) trigger mechanism;
2) task priority calculation; and 3) task selection. First, a trig-
ger mechanism launches the scheduling algorithm by detecting
both solar variation and task status at the beginning of each
time slot. After that, the current task priorities are obtained
with classified solar power prediction by two ANNs. Finally,
a task selection method determines the execution status of the
tasks based on their priorities. The three parts of the algorithm
are presented in details in the rest of this section.

B. Trigger Mechanism for Intra-task Scheduling

As tasks can be interrupted at the beginning of any time slot,
we first need to choose scheduling points for online intra-task
scheduling, as scheduling at the beginning of all the time slots
is costly and inefficient. Observing the variation of solar power
and task status on the SCSN architecture, we find that intra-
task scheduling should be done in the following situations,
which may affect the DMR of the periods.

1) The executed tasks are completed or the new tasks start.
2) The executed tasks miss their deadlines.
3) The solar variation happens.

Thus, we develop a trigger mechanism, including all the
situations as triggers.

Let overi denote the completion trigger of τi. A scheduling
point is triggered, if overi = 1. It means τi is completed.
Let starti describe whether τi can be executed or not. That is,
starti = 1, if all its depending tasks are completed and it can
be executed. In the worst case, the number of the scheduling
points triggered by {overi} and {starti} is N, which is the
number of tasks.

Let missi denote the deadline missing trigger of τi. It is trig-
gered, if missi = 1. It means τi misses its deadline (lrem

i (Di) >

0) and it does not have dependent tasks (
∑N

j=1 Ei,j = 0). In the
worst case, the number of the scheduling points is N.

Let sv(t) denote the trigger of the solar variation at the
beginning of the tth time slot and it is calculated as follows:

sv(t) =
{

1, if |Ps(t) − Ps
(
t′
)
| > δ1&

(
t − t′

)
· "t > δ2

0, otherwise
(17)

where t′ is the time slot of the last scheduling point. δ1 and δ2
are the thresholds of solar variation quantity and time, respec-
tively. They are defined by users. The scheduling point is
triggered, if sv(t) = 1. It means the solar variation quantity is
larger than the threshold (|Ps(t) − Ps(t′)| > δ1) and it is not a
short-time shock ((t − t′) · "t > δ2). As sv(t) is related to the
thresholds (δ1 and δ2), smaller thresholds mean larger num-
bers of scheduling points triggered by sv(t). In the worst case,
the number is |T|, which is the total number of the time slots
in a period.

C. Task Priority Calculation

After solving the problem of choosing the scheduling points
by the trigger mechanism, we need to decide which tasks to
be executed at each scheduling point? The optimal DMR is
obtained by offline formulation in Section IV-C. However,
we cannot use the optimal scheduling results ({xi(m)}, m ∈
[t, |T|]) for online scheduling directly. It is because the solar
power obtained in real applications is different from that used
in the formulation. A parameter to characterize the long term
trend of task priority is more preferred, as they are more
stable under small solar variations. Based on the scheduling
results ({xi(m)}, m ∈ [t, |T|]), we define the task priorities
({λi}, i ∈ [1, N]) as follows:

λi =
∑|T|

m=t xi(m) · (|T| − m + 1) · "t
lrem
i (t)

(18)

which is the weighted execution status of task τi. Larger values
mean higher priorities. That is, we prefer to assign higher
priorities to the tasks, which are executed earlier based on the
optimal scheduling results. According to the priorities, we can
select tasks to execute on the NPEs.

As the inputs (solar power in a period and task status)
and outputs (types of solar profiles and task priorities) have
quite complex nonlinear relationships, they cannot be directly
described by the traditional data fitting models (e.g., lin-
ear, polynomial, exponential models, etc.). ANN models have
much better ability of nonlinear data fitting and self-learning
with new training samples, which is more suitable to be trained
for online solar profile prediction and task priority calculation
on the sensor nodes. Zhang et al. [24] developed a shallow
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Fig. 7. Proposed diagram of task priority calculation.

Fig. 8. Architecture of the BPN.

learning model [back propagation network (BPN)] with fixed
parameters, which are trained offline with the priorities based
on the unclassified solar power. Thus, it leads to inaccurate
prediction when the solar profiles are inconsistent with the
average case. Besides, the BPN is too simple to calculate the
suitable priorities effectively based on the complex inputs of
the solar power and task status.

Thus, we first predict the type of solar profile in the current
period by a BPN and select the corresponding parameters for
a deep learning model [deep belief networks (DBNs)] based
on the predicted type. After that, we calculate the task prior-
ities by the DBN with the selected parameters (see Fig. 7).
The reason to select them is that the BPN and DBN are the
most suitable models for one and multidimensional general
data (e.g., solar power and task status) among the frequently-
used ANN models, respectively. The BPN is used to predict
the type of the solar profile with a small complexity while the
DBN has the ability of data feature extraction and calculates
the priorities more effectively.

1) BPN-Based Solar Profile Prediction: The architecture of
the BPN is presented in Fig. 8. It contains three parts: 1) the
input layer; 2) the hidden layer; and 3) the output layer. The
inputs are the solar power ({Ps(m)}, m ∈ [t− |T|+1, t]) during
the last |T| time slots and a vector X is used to store them.
G is the set of neurons in the hidden layer and it contains
|G| neurons. The output layer contains one neuron and the
predicted type of solar profile h (h ∈ [1, H]), where H is the
number of types.

We get the predicted type (h) by online BPN calculation as
follows:

G = sigmoid
(

B1 · X + I1
)

h = sigmoid
(

B2 · G + I2
)

sigmoid(x) =
(
1 + e−x)−1 (19)

Fig. 9. Architecture of the DBN.

where sigmoid() is the nonlinear activation function. B1 is
the weight coefficient matrix and I1 is the threshold vector
from the input layer to the hidden layer. B2 is the weight
coefficient vector and I2 is the threshold value from the hid-
den layer to the output layer. {B1, B2, I1, I2} are obtained as
follows. We first classify all the period-level solar profiles
({Ps(m)}, m ∈ [t, t + |T| − 1]) into H types based on their
basic shapes with the k-means algorithm. The solar power
before classification and the corresponding type (h) are used
as the training samples. After that, the parameters of the BPN
{B1, B2, I1, I2} are trained offline with these samples. The
complexity of online BPN calculation is O(|G| + 1), which
is equal to the total number of the neurons in the model.

2) DBN-Based Task Priority Calculation: The architecture
of the DBN is shown in Fig. 9. The DBN contains three
parts: 1) the input layer; 2) the multiple hidden layers; and
3) the visible layer for outputs. The inputs are the solar power
({Ps(m)}, m ∈ [t− |T|+1, t]) during the last |T| time slots and
the task status at the beginning of the tth time slot ({lrem

i (t)}).
A vector X is used to store the inputs. The multiple hid-
den layers extract the features of the inputs by unsupervised
learning on two types of networks: 1) restricted Boltzmann
machine (RBM) and 2) directed belief network. The visible
layer calculates the outputs by a BPN with |G| neurons. The
outputs are the optimal task priorities ({λi}).

The optimal task priorities ({λi}) are obtained by online
DBN calculation as follows. First, a joint probability distribu-
tion function is calculated

P
(

X, F1, . . . , FM, Y
)

= P
(

F1, X
)

· · · P
(
Y|FM)

(20)

where {F1, . . . , FM} denotes the sets of neurons and Y is the
visible vector in M + 1 hidden layers. The conditional proba-
bility functions in (20) are independent of each other and they
are calculated as follows:

P
(

F1, X
)

=

⎛

⎝1 + exp

⎛

⎝−
∑

j

(
F1

)T
· B1 · X

⎞

⎠

⎞

⎠
−1

P
(
Y|FM)

=
∏

i

P
(
yi|FM)

P
(
yi = 1|FM)

=

⎛

⎝1 + exp

⎛

⎝−
∑

j

bM
i,j · f M

j

⎞

⎠

⎞

⎠
−1

,

yi ∈ Y, bM
i,j ∈ BM, f M

j ∈ FM (21)
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Algorithm 1: Task Selection Method
input : {Pi},Ps(t), {λi};
output: online scheduling results {̃xi(t)}.

1 Initialization: Set {̃xi(t)} to zeros and set n = 1;
2 Set all the NPEs in the available states.
3 Sort {λi} in a descending order.
4 while

∑n
k=1 x̃k(t) · Pk ≤ Ps(t) & n ≤ N do

5 Get τn with the nth priority in {λi}.
6 if τn’s corresponding NPE is available &
7 overn = 0 & startn = 1 & missn = 0 then
8 Set x̃n(t) = 1 and execute τn on the NPE.
9 else

10 τn remains in the idle state.
11 end
12 n = n + 1.
13 end
14 return {̃xi(t)}.

where {B1, . . . , BM+1} are the weight coefficient matrix from
one hidden layer to the next. The outputs are then obtained
by calculating the BPN based on the visible vector (Y).
{B1, . . . , BM} are obtained as follows. We first calculate the
optimal task priorities based on the INLP formulation (see
Section IV) and (18) with the solar power classified in each
type. The solar power ({Ps(m)}, m ∈ [t − |T| + 1, t]), the task
status ({lrem

i (t)}) and the corresponding task priorities ({λi})
are used as training samples. After that, the parameters of
the DBN {B1, . . . , BM} are trained offline separately with the
samples related to each type. In addition, the parameters in
each RBM (Bk+1, k ∈ [0, M]) are trained iteratively as fol-
lows (see Fig. 9). Based on the initial Bk+1 obtained randomly,
the current Fk+1 are generated by the original Fk. After that,
Fk are reconstructed by the generated Fk+1. Thus, the corre-
sponding Bk+1 are modified based on the difference between
the original and reconstructed Fk. After several iterations, the
final Bk+1 is obtained. The complexity of online DBN calcu-
lation is O(NDBN · (M + 1) + |G| + N), where NDBN is the
number of the neurons in each hidden layer. The complexity
is determined by the total number of the neurons in the model.

D. Task Selection

With the calculated task priorities ({λi}), the task selection
method is illustrated in Algorithm 1 and we illustrate it as fol-
lows. The inputs are the maximum power consumption of the
tasks ({Pi}), the current solar power Ps(t) and the calculated
task priorities {λi}. The outputs are the scheduling results for
the tasks in the tth time slot (̃xi(t)). In the algorithm, initial-
ization is executed (lines 1 and 2) and the task priorities {λi}
are sorted (line 3). Tasks are then chosen to be executed or
not based on their priorities (lines 4–12). A task is executed
(line 8), if the load power consumption is no more than the
solar power supply (line 4) and the task is available to choose
(lines 6 and 7); otherwise, it remains in the idle state (line 10).
Finally, we get the scheduling results {̃xi(t)} (line 14).

Fig. 10. Prototype of solar-powered nonvolatile sensor node.

Fig. 11. Architecture diagram of solar-powered nonvolatile sensor node.

VI. PROTOTYPE VALIDATION

This section introduces the prototype of storage-less and
converter-less solar-powered nonvolatile sensor node and ver-
ifies the system model on the prototype.

A. Prototype Description

The prototype and its block diagram are presented in
Figs. 10 and 11. A light is used to simulate solar power,
where solar variation is realized by adjusting intensity. Solar
panel 1 monitors the real-time solar power by detecting the
open-circuit voltage, while solar panel 2 harvests energy for
workload. In practice, a much smaller solar panel can detect
the open-circuit voltage by multiplying a certain coefficient.
Both solar panels are 24.75 cm2 and the average converting
efficiency is 6%. The open-circuit voltage is digitalized by
an analog-to-digital converter and given to the power man-
agement unit, which predicts the solar power profiles based
on the scheduling algorithm. Four tasks are executed in two
NPEs powered by the solar panel via s switch. Execution time
and power consumption are measured by an oscilloscope and
a data acquisition (DAQ) board. Though power management
unit in this prototype is implemented by a microcontroller
(MSP430), it can be replaced by a specific chip with negligible
power consumption in real applications. As the wakeup/sleep
energy consumption of FeRAM-based NPEs are 2–3 orders
of magnitude lower than traditional Flash-based processors,
switching overheads are quite small (less than 0.7% [12]).

B. System Model Validation

We validate the system model on the prototype under differ-
ent kinds of solar power profiles. Table II compares the results
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TABLE II
COMPARISON OF SYSTEM MODELING AND HARDWARE MEASUREMENT

Fig. 12. Detailed comparison of power consumption under Solar1.

both from models and measured results. The total execution
time of the models are larger while the energy consumption
are smaller than the measured ones. It is because the mod-
eling results are calculated in the ideal situation, where the
power fluctuations of workload is not considered. However,
DMRs of them are matched well, as small power fluctuations
do not affect the scheduling results. The maximum differ-
ence (“Diff.”) is 6.37%, which validate that the system model
is reasonable for online intra-task scheduling. Finally, the
power consumption of workload under modeling and measured
results are given in Fig. 12.

VII. EXPERIMENTAL EVALUATION

As the prototype in Section VI provides us insights to the
modeling approximations in simulators, this section investi-
gates intra-task scheduling via simulation-based exploration.
It first explains experimental configurations and verifies the
theorem of optimal DMR estimation. After that, the proposed
intra-task scheduling is evaluated in different benchmarks.
Finally, algorithm sensitivity is discussed.

A. Experimental Setup

In the experiment, seven benchmarks are used. Three of
them are synthetic benchmarks (from R1 to R3). The number
of tasks ranges from 4 to 8 and the number of NPEs ranges
from 2 to 6. In addition, Fig. 13 presents four real benchmarks:
1) wild animal monitoring (WAM); 2) SHM; 3) electrocardio-
gram (ECG) applications; and 4) media processing (media).
The execution time and average power consumption of each
task are obtained by running the benchmarks on the NPEs.
Given a real solar database [20], power profiles in five indi-
vidual days (from Day1 to Day5, see Fig. 14) are selected
for daily test (short term) and power profiles in two months
are used for monthly test (long term). In addition, a period is
divided into 60 time slots (|T|) and each time slot lasts for
60 s ("t). The trigger thresholds of solar variation quantity

(a) (b)

(c) (d)

Fig. 13. Configurations of four real benchmarks [execution time (min)
/power (mW)/NPE index]. (a) SHM. (b) Electrocardiograph. (c) WAM.
(d) Media application.

Fig. 14. Harvested solar power (7:00–17:00) in the five individual days.

(a) (b)

Fig. 15. Runtime of the theorem and the INLP formulation. (a) R1 case.
(b) ECG case.

and time (δ1 and δ2) are 5 mW and 240 s, respectively. We
classify solar profiles into eight types. The BPN has one layer
with 30 neurons (|g|). The DBN has five hidden layers (|f |)
and each layer contains 40 neurons (NDBN).

B. Theorem Validation

We first validate Theorem 1 on R1 and ECG benchmarks
in five individual days. Table III compares DMRs estimated
by the theorem and the optimal values obtained from INLP
formulation. Since no task dependence exists in R1 case, the
theorem can obtain the exact optimal DMRs. However, since
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Fig. 16. Comparison of DMR in five individual days.

TABLE III
DMR OF THEOREM AND INLP FORMULATION

there are several task dependences in ECG benchmark, DMR
obtained by the theorem is smaller than the optimal value.
It is because theoretical DMRs are obtained based on the
start time of tasks estimated by (8), which are smaller than
actual values. However, the average difference between them
is 9.91%, which provides a reasonable lower bound for DMR
estimation. Furthermore, Fig. 15 compares the runtime of two
approaches. Compared with the INLP approach, the theorem is
105× much faster, which is less than 0.01 s. Therefore, the the-
orem is effective for fast optimal DMR estimation, especially
for scheduling problems in large scales.

C. Inter-task Versus Intra-task Scheduling Under
Different Benchmarks

We compare our proposed algorithm with traditional inter-
task scheduling (W-LSA [7]) and intra-task scheduling without
classified solar power prediction [24] (intra-W/O). In addi-
tion, optimal DMRs obtained from INLP formulation are used
as lower bounds. DMRs and energy utilization efficiency of
these algorithms are compared under both short- and long-term
conditions.

Fig. 16 compares different algorithms on seven benchmarks
under short-term condition. Compared with [7], the proposed
algorithm reduces DMR by up to 28.8%, where the reduc-
tion becomes more significant when solar power becomes
more limited. The proposed algorithm reduces DMR by up
to 7.90% compared to intra-task scheduling [24], as classified
solar power prediction generates more accurate task priority.
Moreover, the difference between the proposed algorithm and
the optimal INLP is only 3.65%.

Table IV shows the improvements of total and usable energy
utilization efficiency compared to inter-task scheduling [7].
The total energy utilization efficiency equals to the ratio
between the energy to execute all tasks and the harvested
energy, while the usable energy utilization efficiency denotes

TABLE IV
IMPROVEMENTS OF ENERGY UTILIZATION EFFICIENCY (%)

IN FIVE INDIVIDUAL DAYS

Fig. 17. Comparison of DMR in two months.

the ratio between the energy to execute the tasks meeting their
deadline and the harvested energy. The usable energy utiliza-
tion efficiency reflects the ability to execute tasks satisfying
quality of service. As we can see, the usable energy utiliza-
tion efficiency is larger (up to 8.30%) than the total energy
utilization, which means that the inter-task algorithm [7] tends
to execute tasks missing their deadline and wastes harvested
energy. Moreover, the proposed algorithm performs better (up
to 29.5%) when the solar power budget becomes tighter.

In long-term cases, we compare DMR and energy utiliza-
tion efficiency in two months (from September to October)
for R1 case. Compared with [7] and [24], the proposed algo-
rithm reduces DMR by up to 29.4% and 6.32% shown in
Fig. 17. Fig. 18(a) and (b) presents the total and usable energy
utilization efficiency under different approaches. The average
differences are 11.6% and 20.3%.
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Fig. 18. Comparison of energy utilization efficiency in two months.
(a) Total energy utilization efficiencies of two scheduling algorithms. (b)
Energy utilization efficiencies of two scheduling algorithms.

TABLE V
COMPLEXITY COMPARISON AMONG DIFFERENT ALGORITHMS

Finally, we compare algorithm complexities. The MSP430
runs scheduling algorithms at 1 MHz with an oscilloscope
and DAQ board to get the execution cycles and energy con-
sumption. In Table V, the proposed algorithm increases both
scheduling points and the algorithm complexity compared with
previous ones, however, energy overheads are less than 1%.

D. Sensitivity Analysis of Algorithm

In this section, we analyze algorithm sensitivity under four
factors: 1) the number of trigger points; 2) the type number of
solar profiles; 3) the parameters of neural network; and 4) the
task features.

1) Sensitivity Analysis of Trigger Points: Fig. 19 presents
the relationship between DMR and the number of trigger
points for R2 benchmark in Day4. Situations with and without
solar variation time threshold are considered. As more trig-
ger points are used, DMR becomes lower, which means more
fine-grained scheduling is adopted. However, DMR becomes
stable when the number of trigger points reaches a certain
value, since small power variations has less impact on DMR.

2) Sensitivity Analysis of Solar Power Type: Fig. 20
presents the relationship between DMR and the type num-
ber of solar profiles for R1. DMR decreases from 39.6% to

Fig. 19. Sensitivity analysis of solar variation trigger points.

Fig. 20. Sensitivity analysis of types of solar profiles.

(a) (b)

Fig. 21. Architecture optimization for the BP and DBN. (a) Architecture
optimization for the BP model. (b) Architecture optimization for the DBN
model.

29.8% when the type number becomes larger (from 1 to 8),
as more types make the solar power prediction more accu-
rate. However, there is a breakeven value for the type number.
When the type number is larger than a certain threshold (eight
types in this case), DMR becomes even worse (from 29.8%
to 33.8%). This can be analyzed as follows. First, as the type
number becomes larger, the training samples in each type is
smaller given a certain amount of solar data. Thus, the predic-
tion accuracy degrades in an ANN model (e.g., BPN). Even if
we can increase training samples, the ANN model with a fixed
scale may lead to over-fitting and also decrease the prediction
accuracy. It is because the ANN model with the fixed scale
is not large enough to describe the complex relationship of
the increased training samples. Thus, the small-scale model
with too many samples causes over-fitting, which hurts the
prediction accuracy badly.

3) Sensitivity Analysis of Neuron Network: We explore the
ANN model from two aspects: the architecture and the inputs
of solar data. To optimize the architecture, we investigate the
number of layers and neurons in Fig. 21. The minimum nor-
malized error (4.70%) is achieved when BPN has 40 neurons.
The minimum daily error (9.36%) is achieved when DBN has
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Fig. 22. Inputs optimization for the DBN.

five layers and 50 neurons in each layer. More layers and
neurons may cause under-fitting while less of them may cause
over-fitting.

In addition, we can achieve better prediction accuracy by
training the DBN with better inputs of solar data. Fig. 22
compares DMRs under different solar data in a month. The
original data is historical solar power. The statistical data rep-
resents the mean value and variation of historical solar power
in each period. The season data denotes the season information
corresponding to historical solar power in each day. Compared
with the original data, higher distinguishability of solar data
means better prediction, which contributes to DMR reduction
(up to 21.5%).

4) Sensitivity Analysis of Task Features: DMR is also
affected by several task features, such as power consumption
and task dependence. We define a metric (PRavg) to describe
the power requirement of a task set as follows:

PRavg =
N∑

i=1

Pi · Li/(Di − Ri) (22)

where Ri is the start time of τi. PRavg is equal to the aver-
age power requirement of all tasks in a period. The task
dependence rate (TDR) is defined as follows:

TDR =

⎛

⎝
N∑

i=1

N∑

j=1

Ei,j

⎞

⎠
/

N (23)

where TDR is the ratio of edge number to task number. Larger
TDR means more connections among tasks.

Fig. 23(a) presents the relationship between DMR and
power requirement. Compared with inter-task scheduling algo-
rithm (W-LSA, [7]), the proposed algorithm achieves larger
DMR reductions (from 3.5% to 8.7%) when PRavg becomes
smaller (from 136.2 to 63 mW). It is because smaller PRavg
means looser power requirement and larger scheduling space
for the scheduler. In addition, Fig. 23(b) presents the relation-
ship between DMR and TDR.

VIII. RELATED WORK

This section introduces the related work of energy-driven
task scheduling, which contains the scheduling strategies and
the solar power prediction methods.

A. Offline Scheduling Algorithms

There are lots of offline scheduling algorithms developed
for embedded systems under certain constraints [25], [26].

(a) (b)

Fig. 23. Sensitivity analysis of energy requirement and task dependence. (a)
Power requirement (mW). (b) TDR (%).

For energy harvesting systems, the offline scheduling algo-
rithms make use of the historical energy profiles and task
timing parameters. Kansal et al. [18] proposed a scheduling
method to tune duty-cycling based on historical solar power
for periodic tasks. Audet et al. [27] developed a static sched-
uler to assign execution time to the tasks, whose priorities are
higher if they consume more energy. Though these scheduling
algorithms perform well in the offline situations, they are less
effective as the online power profiles are usually inconsistent
with the offline ones.

B. Online Scheduling Algorithms

To match the online workload variations, previous work has
proposed many online algorithms for real-time systems [28].
Solar-powered sensor nodes need specific scheduling algo-
rithms to match the power supply and workload. Lazy schedul-
ing algorithms (LSAs) [29], [30] are adopted to determine
the start time of each task for maximal energy utilization.
Recas et al. [7] improved the LSA by adding predictions
for real-time solar variations. Furthermore, task decomposition
and combination were proposed by Zhu et al. [31] to real-
ize more accurate and flexible load matching. To utilize task
slacks, dynamic voltage and frequency scaling (DVFS) was
integrated into load matching algorithms [32], [33] to achieve
better DMR. Researchers further improved this approach
by considering super capacitor charging efficiency [8] and
multicore systems [34]. Moreover, Wang et al. [10] pro-
posed an integer linear programming (ILP) formulation for
the online DVFS on a multicore system. Although these
algorithms are effective for online scheduling, the energy
loss caused by energy storage and dc–dc convertor cannot
be avoided in the traditional harvest-store-use architecture.
Recently, Wang et al. [12], [13] developed an energy-efficient
SCSN, which achieves up to 23% higher energy efficiency than
the traditional architecture. Developing appropriate scheduling
algorithms for such an architecture is still an open problem,
since it is more sensitive to the power variations due to lacking
of energy buffer.

C. Solar Power Prediction Methods for Scheduling

Besides scheduling algorithms, the solar power prediction
methods play another important role, as they have great
effects on the scheduling results. In EWMA method [18],
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harvested energy at a particular time is calculated as weighted
average energy at the same time over a set of previous
days. Later, researchers developed a prediction method of
WCMA [7], [19], which adapts to seasonal changes as well as
sudden weather changes. Furthermore, more advanced models,
such as support vector machine [35], back propagation net-
work (BPN) [36] and recurrent neural networks (RNN) [37],
were proposed based on wind speeds, temperatures, dew
points, sky cover, precipitation potential, etc. Though they are
good for the average case, high DMR in solar-powered sen-
sor nodes still occurs when solar profiles are quite different
from the average case. Therefore, this paper developed a solar
power prediction method based on the classified solar profiles.

IX. CONCLUSION

Solar-powered nonvolatile sensor nodes without energy stor-
age and dc voltage conversion achieve high energy efficiency.
This paper proposes intra-task scheduling with flexible and
timely task adjustment. We first build a system model, ana-
lyze the schedulability with optimal DMR estimation in theory
and develop an INLP formulation for optimal scheduling. An
online intra-task scheduling algorithm is then proposed. We
validate the proposed algorithm with a hardware prototype
and analyze it with several benchmarks. The experimental
results show that the algorithm reduces the DMR by up to
30% and improves the energy utilization efficiency by 20%
on average. The algorithm incurs less than 1% overhead of
the total energy consumption. Furthermore, future studies will
explore the scheduling algorithms on the sensor nodes with
other (or hybrid) energy sources such as thermal, wireless,
and vibration.
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