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Abstract—High power consumption has significantly increased the cooling cost in high-performance computation stations and limited
the operation time in portable systems powered by batteries. Traditional power reduction mechanisms have limited traction in the post-
Dennard Scaling landscape. Emerging research on new computation devices and associated architectures has shown three trends
with the potential to greatly mitigate current power limitations. The first is to employ steep-slope transistors to enable fundamentally
more efficient operation at reduced supply voltage in conventional Boolean logic, reducing dynamic power. The second is to employ
brain-inspired computation paradigms, directly embodying computation mechanisms inspired by the brains, which have shown
potential in extremely efficient, if approximate, processing with silicon-neuron networks. The third is “let physics do the computation”,
which focuses on using the intrinsic operation mechanism of devices (such as coupled oscillators) to do the approximate computation,
instead of building complex circuits to carry out the same function. This paper first describes these three trends, and then proposes the
use of the hybrid-phase-transition-FET (Hyper-FET), a device that could be configured as a steep-slope transistor, a spiking neuron
cell, or an oscillator, as the device of choice for carrying these three trends forward. We discuss how a single class of device can be
configured for these multiple use cases, and provide in-depth examination and analysis for a case study of building coupled-oscillator
systems using Hyper-FETs for image processing. Performance benchmarking highlights the potential of significantly higher energy
efficiency than dedicated CMOS accelerators at the same technology node.

Index Terms—HyperFET, steep slope, coupled oscillators, neural network, spiking neuron, image processing, approximated processing
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1 INTRODUCTION

FOR the last few decades, power has been a major con-
straint for very-large integrated circuits. In the past,

increases in chip functionality were paid for through lower-
ing the supply voltage and reducing transistor capacitance
through the scaling of CMOS technologies. However, with
the end of Dennard scaling [4], further reduction of the sup-
ply voltage to reduce the power in Boolean logic has become
challenging because of increasing leakage power with the
!60 mV=decade subthreshold slope (SS) of CMOS devices.
Consequences of this include high cooling cost in high-per-
formance computation nodes, and limited operation time in
portable battery-powered systems. Furthermore, the resul-
tant shift in the economics of the virtuous cycle of investment
in future process nodes holds back further reduction of cost
per function. In response to these challenges, there has been
rising interest in research on a collection of new devices with
< 60 mV=decade SS and new architectures with higher
power efficiency, as shown in Fig. 1.

The goal of steep-slope devices is to further lower the
power consumption by lowering the supply voltage for lower
dynamic power while keeping low leakage current and suffi-
cient ON-current for driving capability [5], [6], [7], [8].
Reported research on steep-slope devices include tunneling
FETs (TFETs) [1], negative-capacitance FETs (NCFETs) [9],
and also metal-insulator-transition (MIT) FETs such as the
Hyper-FET [2]. The most direct application scenario for these
steep-slope devices is similar to that of the conventional
CMOS, in that they could be used as Boolean logic device
with ON-OFF drain-source by the gate input control. Mean-
while, it is also noted that those devices may exhibit unidirec-
tional conduction [10], [11], hysteresis [2], [9], non-volatility
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[12], [13], or other second-order considerations such as differ-
ent device capacitance characteristics [14]. While the Hyper-
FET can be used directly in this fashion as aMOSFET replace-
ment, this is not the primary focus of this work, and, due to
similarity to existing CMOS approaches, will be covered in
limited detail.

On the emerging architecture, rather than device, front,
one driving question is what forms computation can and
should take going forward. In particular, there has been a
renaissance in domain-specific processing, especially in
graphics and computer vision, increasing acceptance of spe-
cialized accelerators as part of general purpose systems, and a
willingness to embrace new models. One such architecture is
“brain-inspired” computation, such as those used in neuro-
morphic [15] and other approximate computing plat-
forms [16], [17], [18]. In this paper, we will show that the
Hyper-FET based spiking neurons, compared with conven-
tional integrate-and-fire (IAF) neurons, are much more effi-
cient in the similar functionwithmuch lower area cost.

Another attractive feature of some non-Boolean architec-
tures is the notion that they can “let the physics do the
computing” [19], [20] and, in so doing, achieve significant
efficiency gains so long as the problem can be specified in a
manner that matches the physical phenomenon. One such
class of non-Boolean architectures for computation is sets of
weakly-coupled oscillators. When a number of oscillators
are coupled together, they will synchronize if their initial
states are sufficiently close. Such synchronized oscillation,
namely an attractor basin function, is observed across
mechanical (e.g., pendulum), electrical (e.g., electronic oscil-
lators) and human neural systems (e.g., neural-oscillators).
These synchronized oscillatory systems have been shown to
possess associative computational capabilities [19], [21]. In
this paper, we will show that the Hyper-FET based coupled
oscillators are capable of forming area-efficient and power-
efficient computation primitives for a range of applications,

especially in image processing. Detailed device operating
mechanism, circuit and architecture design, and perfor-
mance evaluation will also be provided in this paper.

To ensure that investments in these new architectures
and devices yield truly efficient systems, co-design of both
devices and architecture is required. In this paper, we will
focus on Hyper-FET based device modeling, circuit and
architecture design, showing the potential of enabling new
computation paradigms for higher power efficiency. The
properties of circuits designed using these new devices are
well-matched to the demands of existing algorithms in
image processing and other domains. And device-circuits-
algorithm co-design is expected to bring even more benefits
to these applications in terms of functionality, power
efficiency, etc., with more degree of optimizations.

The remainder of the paper proceeds as follows. Section 2
includes the background of the Hyper-FET devices. Section 3
describes how Hyper-FET-based spiking neurons and net-
works are constructed. Section 4 shows the Hyper-FET-
based oscillators, and how oscillator networks’ synchroniza-
tion behaviors can perform computations. Section 5 presents
a case study in architecture and device co-design in the form
of the implementation of a configurable oscillator network,
and provides circuit-level validation that the tunable net-
work effectively approximates a desirable family of mathe-
matical functions. Section 6 presents the system-level
approach to building a coprocessor fabric out of these tun-
able oscillator primitives, and how problems can be mapped
to a single tile. Section 7 evaluates the computing efficiency
on oscillator arrays compared to CMOS-based accelerators.
Section 8 discusses relatedwork and Section 9 concludes.

2 INTRODUCTION TO HYPER-FET DEVICES

AND APPLICATIONS

The key novel feature of a HyperFET is the integration of
VO2, a resistive switching device (RSD), with the transistor.

Fig. 1. Power challenge and new trends: new devices, new architectures (brain-inspired, let physics do the computation).
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The VO2 material, i.e. Vanadium Dioxide, is an Insulator-to-
Metal transition (IMT) material that exhibits strong correla-
tion of the resistance with external perturbation, such as
temperature, pressure, and electrical stimulus [22], [23].
Fig. 2a shows the voltage applied at the VO2 device versus
the current flowing through it, which has been proved to
show a sharp change in resistivity up to five orders in mag-
nitude at #340 K [24].

Circuit-level simulations employ a Verilog-A model. The
Verilog-A model for emulating the rapid resistance transi-
tion characteristics is based on the calibrated characteristics
of the fabricated VO2 oscillator. The Verilog-A model is as
follows:
module VO2(a, b);

inout a, b;

electrical a, b;

parameter real R1 = 1k;

parameter real R2 = 50k;

parameter real V1 = 5.9;

parameter real V2 = 0.5;

parameter real tt = 100n;

parameter real ini\_type = 0;

real type;

real R;

analog begin

@(initial\_step)

begin

type = ini\_type;

end

@(cross(V(a, b) - V1)) type = 0;

@(cross(V(a, b) - V2)) type = 1;

I(a, b) <+ V(a, b)

/ transition(type ? R2 : R1, 0, tt);

end

endmodule

The device model shows good agreement with the exper-
imental results of the relaxation oscillator and the coupled
oscillator described in Section 4.1. By using a resistor [23] or
a MOSFET (as a current source) [3] in series to induce a
negative feedback, this electrically induced phase transition
in VO2 can be modulated dynamically, resulting in an oscil-
lation between high and low resistive states. There are also
other approaches that model the similar resistive switching
behaviors [25], [26].

Fig. 2b illustrates the schematic of the experimental
Hyper-FET consisting of a two-terminal VO2 device in series
with the source of a Si n-type MOSFET. In the experimental
Hyper-FET setup, the VO2 device is configured as an external
device connecting in series with the MOSFET. The applied
gate control voltage of the MOSFET modulates the channel
energy barrier, and electrically triggers the abrupt state tran-
sition of the VO2 material. Such abrupt resistivity change of
VO2 modulates the drain-source current (IDS) flowing
through the MOSFET, induces a negative differential
resistance (NDR) across VO2 that results in internal voltage
amplification achieving a steep-slope characteristic which
further enhances the Hyper-FET performance beyond that of
a conventionalMOSFET.

Although not shown in the concept schematic in Fig. 2b,
Hyper-FETs could also make use of FinFET technology to
enable multi-fin structure. Figs. 2c and 2d plot the n-type
and p-type transfer characteristics (IDS $ VGS), respectively,
for the case where the number of fins equals three. The
direct comparison of the n-type (p-type) Hyper-FETs
with the stand-alone FinFET reveals an improved IDS$ON=
IDS$OFF ratio over a VGS range of 0:8 V ($0:5 V ), and thus a
#20% (#60%) enhancement in IDS$ON at matched IDS$OFF ,
respectively.

It is also noted that the hysteresis in Hyper-FET
IDS $ VGS curves may result in hysteresis turn-on/turn-off
behavior in logic gates, and further, a more complex delay
evaluation. Nevertheless, it has been revealed that hystere-
sis logic transfer behavior could be of great benefit when
employed for better noise immunity [13]. Further explora-
tion of such Hyper-FET hysteresis behavior in logic circuits,
though not covered in this paper, shows more potential of
applications in digital logic designs.

More introductions to the device fabrication could
be found in [2]. The metal and insulator states resistance
values would be determined by the dimensions of device
width, length, and thickness, while the voltage conditions

Fig. 2. Hyper-FET: (a) VO2 in Hyper-FET. (b) Hyper-FET structure. (c) N-
type Hyper IDS $ VGS characteristics comparison with Si MOSFET with
fin number equal to 3. (d) P-type Hyper IDS $ VGS characteristics com-
parison with Si MOSFET with fin number equal to 3. [2]
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determined by the device length. Significant challenges
remaining include fabrication of large device arrays with
limited variability. This challenge must be confronted in
two areas: At the growth level uniform film properties must
be controlled across the wafer. Equally as important will be
process optimization into to eliminate yield and variability
challenges from device to device.

3 ANALOG SPIKING NEURON NETWORK

3.1 Spiking Neuron
Unlike Boolean logic with digital representations and
clocked operations, brain-inspired systems exhibit more
robustness and reliability based on distributed, event-
driven, collective, and massively parallel mechanisms. Such
systems make extensive use of adaptation, self-organization,
and learning [27]. Efforts to bridge the gap between the scale
and performance of mammalian neural networks have
turned to emulating certain aspects of the form of biological
nervous systems as well as their abstract functionality, with
the development of dense arrays of neurons wherein certain
portions of the circuit act as axons, and synapses: Following
the naming of the biological components, an artificial neuron
is an Integrate-and-Fire (IAF) unit, receiving external excite-
ments from the axons of the preceding neurons through
the synapses, as shown in Fig. 3a. Despite decades of
research on the implementation of silicon neurons, the cur-
rent artificial neurons are still much larger in physical size
and power than a general human neuron. Considering the
large number of neurons in a biological-scale network, this
imposes both performance and power- efficiency con-
straints. Consequently, reducing the power and chip area of
artificial neurons is of significance in implementing larger
systems for higher level tasks.

Given the two resistance states of the RSD, a spiking neu-
ron is constructed by pairing the RSD with a transistor as a
configurable impedance. Fig. 3b shows the structure of a
spiking neuron cell with the synapse receiving the input
spike. The resistance of a RSD RM switches between insula-
tive (RI) and conductive (RC) states. To simplify the analy-
sis, the equivalent impedance of the transistor is
represented as RL. RM and RL are connected in series as a
voltage divider, hence the voltage of the connection node
VO has two stable levels

VO ¼ VDD & RL

RL þRM

¼
VDD & RL

RLþRI
¼ VI for insulative state

VDD & RL
RLþRC

¼ VC for conductive state:

8
<

:

(1)

As shown in Fig. 3c, the neuron behavior with a pre-
excited spike contains three stages:

(1) the RSD charges CL to VC ,
(2) the RSD transitions to insulator state,
(3) RL discharges CL to VI , and it stops here.
The synapses, receiving input spikes and reduce the total

equivalent impedance from VO to the ground, will lower the
voltage level and trigger the output spiking. As shown in
Fig. 3d, whenever the neuron receives sufficient input spike
(s) from the synapses, VO reaches the triggering voltage and
goes to the fourth step:

(4) the RSD transitions to conductor state, with which the
neuron spikes again.

The basic function of a neuron cell is generating a spike
when receiving excitements over a certain threshold, which
in our case is determined by VBIAS . Figs. 4a and 4c show the
case the input spike doesn’t trigger a output spike. Increas-
ing VBIAS lowers the stable voltage VI , and vice versa. When
VI is closer (farther) to the IMT condition of the RSD, the
neuron need fewer (more) input spikes to trigger the output
spike. Therefore, a higher VBIAS means the neuron is spiking
based on a lower threshold of number of input spikes.
Figs. 4b and 4d show the case that the neuron with a higher
VBIAS spikes for the same amount of input spikes.

3.2 Neuron Network
A single neuron is a device of extremely limited computa-
tional capability; Neural network models to solve complex
problems demand large numbers of neurons deployed in
an interconnected network. Thanks to its compact structure,
the crossbar architecture is widely adopted for connections
in silicon-neuron networks [28]. Fig. 5a shows the crossbar

Fig. 3. (a) The neuron, axon, and synapse connectivity. (b) The circuit
structure of a Hyper-Fet based neuron cell. The output behavior of
(c) stable state (non-spiking) and (d) input triggered spiking state (blue:
triggering voltage, red: stable voltage).
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structure, in which the vertical lines are the axons (spike
source) AN and the horizontal lines are the outputs of neu-
rons NM , connected by the synapses SyMN with respective
weights WMN . In the following simulations of neuron net-
work behaviors, we use the input pattern shown in Fig. 6a.
Fig. 6b shows the neuron spiking behavior with different
thresholds. As mentioned in Section 3.1, the higher VBIAS

induces a lower insulative state voltage VI , and thus
requires fewer input spikes to excite an output spike.

The weights of the synapses can be zero (no connection)
or positive/negative value (positive/negative correla-
tions). A positive (negative) correlation means the neuron
is more (less) likely to spike if the source axon spikes.
Fig. 5b shows the basic synapse, in which VON controls the
connectivity and VP=N switches the synapse between pull-
ing high and pulling low. The synapse has the following
operations:

(1) No correlation {0}: VON ¼ low, VP=N ¼ Xðdon0tcareÞ.
(2) Positive correlation {þ}: VON ¼ high, VP=N ¼ high.
(3) Negative correlation {$}: VON ¼ high, VP=N ¼ low.
Fig. 6c shows the output spikes can have both positively

(+) and negatively ($) correlative to the input spikes with
the basic synapses.

In a rate coding mode the spikes can represent different
value, while in the basic mode the spike contains
only 1=0 ðTRUE=FALSEÞ informations. Fig. 5c shows the
advanced hybrid synapse that can switch between short-
term (basic) and long-term (rate coding) modes. The
diode connected transistor has single-direction propaga-
tions which charge the memory capacitor CM when the
input spikes occur, and the other transistor in parallel works

as a switch between long- and short-term modes. In the
long-term mode VL=S is low, so the CM is not discharged
during the falling edge of the input spike. Therefore, the
hybrid synapse has two addition operations:

(4) Long-term positive correlation {þþ}: VL=S ¼ low,
VON ¼ high, VP=N ¼ high.

(5) Long-term negative correlation {$ $}: VL=S ¼ low,
VON ¼ high, VP=N ¼ low. Fig. 6d shows the rate coding

mode neuron network behaviors. For each additional
long-term positively correlative (++) input spike, the
output spike increases the frequency, and vice versa.

The spiking neural network can be used in simple
applications like pattern matching or event detection [29],
or be constructed as the large-scale systems like convo-
lution neural networks (CNN) to support more complex
applications like written digit recognition [30] and face
detection [31].

4 OSCILLATORS AND COUPLING

Oscillators that weakly couple, as through a common sub-
strate for mechanical oscillators, or via capacitive coupling
among outputs in electrical oscillators, have collective
synchronization properties that can be used to perform
computation. To date, many of the systems designed to

Fig. 5. (a) The crossbar structure of neuron network (N: neuron, A: axon,
Sy: synapse, W: weight of synapse). The circuitry of (b) the basic syn-
apse and (c) the long-/short-term hybrid synapse.

Fig. 4. The simulated neuron behavior: (a) no output spike (insufficient
VBIAS) and (b) input spike triggering output spike (with increased VBIAS).
The measured neuron behavior: (c) no output spike (insufficient VBIAS)
and (d) input spike triggering output spike (with increased VBIAS).
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perform computation via oscillator coupling have primar-
ily been intended to perform tasks in the fields of image
processing, pattern analysis and computer vision. By uti-
lizing the locking behavior of coupled oscillators as a
computational primitive analogous to a distance metric,
the systems are capable of performing associative

matching functions. The recent development of nano-oscil-
lator based associative memories has further enhanced the
potential for oscillator based systems for intelligent infor-
mation processing (details in Section 8). In most of these
works, however, each oscillator network (i.e., the specific
topology of and weighting of oscillator coupling) has been
constructed in a homogeneous fashion that focuses on
solving a specific problem with a given network. In this
paper, we examine the ways in which the computational
paradigm can be extended, and the networks configured,
to support a broader family of functions for a specific
domain on a single computing fabric where each tile in the
fabric contains a tunable oscillator network.

In the rest of this section, we build upon the introduction
to hyper-FET oscillators in Section 2 and discuss how the
timing and degree of synchronization among N weakly-
coupled oscillators corresponds to certain many-body com-
putations. We then introduce the particular coupling topol-
ogy of capacitive coupling with a common output node that
we will focus on when considering coupled oscillators.

4.1 HyperFET Oscillator
Similar to the spiking neurons, Hyper-FETs can also be used
to construct nano-oscillators. Fig. 7a shows the structure of a
relaxation oscillator with the RSD, in which the resistance
RM switches between insulative (RI) and conductive (RC)
states. To simplify the oscillator model, the parasitic capaci-
tance CP in Fig. 7a is lumped to CL. As shown in Fig. 7b, the
oscillation cycle contains four stages:

(1) the RSD charges CL to VC ,
(2) the RSD transitions to insulator state,
(3) RL discharges CL to VI , and then
(4) the RSD transitions back to conductor state.
Without the phase transition, the system would tend to

stay in one of the two stable voltage levels, VI and VC . The
respective stable current amounts through the RSD (IM ) are

Fig. 7. The (a) schematic, (b) operation, and (c) output waveform (VO) of
a relaxation oscillator.

Fig. 6. (a) Input spikes from each axons for the simulation. The neuron
network behaviors of (b) different thresholds, (c) short-term add/subtract
combinations, and (d) long-tern (rate coding mode) operations.
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IM ¼ VDD=ðRL þRMÞ

¼
VDD=ðRL þRIÞ ¼ II for insulative state

VDD=ðRL þRCÞ ¼ IC for conductive state;

!
(2)

with the current amount in the insulative state (II) is lower
than that in conductive state (IC).

For the system to oscillate, the stable region, determined
by II and IC , should be carefully designed to overlap with
the conditions of the RSD characteristic transition. As
shown in Fig. 7c, the RSD transition should be triggered
before the system reaches the stable voltage levels. In the
VO2 example, the metal-insulator-transition and insulator-
metal-transition (MIT and IMT) should occur before the
voltage stabilizes, otherwise the system locks at a certain
phase and does not oscillate. To realize a VO2-based oscilla-
tor the following must hold:

II < IIMT < IMIT < IC (3)

The cycle time of oscillation for a single oscillator is pro-
portional to the RC time constant,

Time constant ¼ ðRM jj RLÞ & CL

¼ RM &RL & CL

RM þRL

(4)

Frequency / RM þRL

RM &RL & CL
: (5)

The oscillation of the circuit in Fig. 7a is not controllable.
Replacing the resistor with a transistor introduces a control
input, producing a voltage-controlled relaxation oscillator
(VCRO). The transistor functions as a configurable imped-
ance. By increasing the input voltage VIN in a certain range,
the equivalent impedance of the transistor is reduced, and
therefore the oscillation gets faster. Fig. 8a shows the oscil-
lating frequency with various values for VIN . The oscillation
can also be intentionally turned off by providing large (or
small) VIN , as shown in Figs. 8b and Fig. 8c, where the oscil-
lator is forced to a stable state.

TheVerilog-Amodel of the VO2device is for the ideal case
without variations. The resistance values, R1 and R2, are
related to the stable voltages, VI and VC in Eq. (1). As shown
in Fig. 7c, the stable voltages (red lines) and the switching
conditions (blue lines) would substantially determine the
oscillation behavior. For the variations on resistances of the
VO2 device, a slight increment will induce the lowered VC

(and VI), and slow down (accelerate) the rising (falling) edge.
The variations on the switching condition would affect the
voltage of peak and valley of the oscillations accordingly.

4.2 Two Coupled Oscillators
Coupled nano-oscillators have been investigated to build
associative primitives to accomplish cognitive tasks [32],
[33], [34]. As shown in Fig. 9a, two relaxation oscillators are
weekly coupled together with a capacitor in the traditional
topology. In the proposed coupling network topology in
Fig. 9b, each oscillator is linked to one capacitor, and those
capacitors are connected to a common node VOUT . The tradi-
tional topology is equivalent to the proposed topology with
oscillator size n ¼ 2 and coupling capacitance split into two
(with Cprop ¼ 2& Ctrad). Fig. 9c shows the outputs for the

case VIN1 ¼ VIN2. The VCROs synchronize at the same fre-
quency, and the phase difference between the outputs VO1

and VO2 stabilizes at p. To describe the time that both of the
oscillator are discharging, T ðPi; VjÞ is the time from the
peak of VOi, Pi, to the valley of VOj, Vj.

The current flowing from one oscillator, through the cou-
pling capacitors, delays the other oscillators’ next rising. For
instance, the rising of VO1 induces current to the Cprops,
and causes a delay on the discharging of VO2 and vice versa.
The charge induced by the rising of VO1 on VO2 is discharged
by the discharging current ID2, which decreases when VO2

approaches the stable voltage VI . Consequently, the delay is
longer when VO2 is closer to the next rising. That means
when T ðP1; V 2Þ < T ðP2; V 1Þ, the delay makes the dis-
charging of VCRO2 longer than that of VCRO1, and there-
fore reduces the difference between T ðP1; V 2Þ and T ðP2;
V 1Þ. As a result, the system stabilizes at the state of T ðP1;
V 2Þ ¼ T ðP2; V 1Þwhen VIN1 ¼ VIN2.

In the case of VIN1 6¼ VIN2, the VCROs have different
oscillating frequencies. However, the oscillations will still
couple together if the input voltage difference DV is in a cer-
tain range. Fig. 9d shows the case of VIN1 < VIN2. With the
higher input voltage, the VCRO2 oscillates faster, and there-
fore V 2 gets closer and closer to P1. However, the rising
VOUT1 induces a delay on the discharging of VCRO2, as
previously mentioned, which extends the oscillation period
of VCRO2. Because VCRO2 tends to oscillate faster, and
the delay prevents it from speeding up, the oscillations
are locked in an unbalanced phase difference but still at the

Fig. 8. (a) The frequency of VCRO under various VIN conditions, and the
waveforms of VO around (b) the upper and (c) the lower oscillating
boundary of VIN . (Dashed: oscillating, solid: stable.)
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same frequency. In a unstable or pre-stable oscillation, there
is an ongoing phase change. If the oscillations are going to
stabilize, the amount of phase change decreases in each
cycle. As shown in Fig. 9d, the phase change is about 1 ms
at the beginning and 0:1 ms after five cycles. We note that
phase change is less than 1e$ 4 ms after 10 cycles, and the
system stays locked in phase as simulated for over 1,000
cycles. We declare the system has stabilized within 10 cycles
because 1e$ 4 ms is close to the time granularity of simula-
tion. If we further increase the difference of VIN1 and VIN2,
the oscillators would have different frequencies while one
oscillator has the shorter cycle (individual oscillation period
plus the coupling delay) than the others. In that case, the
out-of-phase oscillations can be observed in a few cycles.

4.3 N Coupled Oscillators
A key appeal of computing using coupled oscillators is that,
by increasing the number of oscillators that are coupled

together, the degree-of-difference of vectors can be simulta-
neously computed. The coherent oscillations are synchro-
nized in the same frequency and stabilized at a constant
phase difference to each other, and the coherence of the
oscillators is correlated to the similarity of the input vol-
tages. In the experiments, three-coupled oscillators have
been measured as shown in Fig. 10a. Figs. 10b and 10c show
the case of three- coupled oscillators in simulation.

Similar to two-coupled oscillators, the three-coupled
oscillators synchronize at the same frequency and have
equivalent phase difference, 2p=3 when they have same
input voltages (Fig. 10b). A VCRO with VIN higher than
average tends to oscillate faster than the others and vice
versa. Fig. 10c shows the case of three oscillators with
unequal inputs (VIN1 > VIN2 > VIN3). As discussed in
Section 4.2, the currents passing through the coupling
capacitors are the key for the oscillator synchronization, as
the voltage rising of one oscillator induces a current that
delays the discharging of the others. However, this effect

Fig. 9. The topology and schematic of (a) the traditional coupled relaxa-
tion oscillator pair and (b) proposed configurable synchronized oscillator
network. The output waveforms of coupled oscillators for (c) VIN1 ¼
VIN2, (d) VIN1 < VIN2.

Fig. 10. (a) The measured frequency spectrum and time domain wave-
forms of the coupled oscillators (n ¼ 3). The output waveform (n ¼ 3)
for ½VIN1; VIN2; VIN3+ ¼ (b) ½450 mV; 450 mV; 450 mV+ (coherent inputs)
and (c) ½550 mV; 500 mV; 450 mV+ (incoherent inputs). (e) The output
waveform (n ¼ 9) for all VIN ¼ 450 mV.
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doesn’t always play out. When the period difference is
larger than the phase difference of any two oscillators,
which means the delay induced by the slower one is not
long enough to hold the rising of the faster one, the synchro-
nization would break down. Consequently, the frequencies
of the oscillators would not be the same, the VOn of each
VCROn would be out of phase, and some spikes would
appear in the amplitude of VOUT . Thus, for highly different
inputs, the measurable degree of difference becomes unsta-
ble, but still, via amplitude of VOUT spikes, registers as “very
different” even though two different “very different” meas-
urements are not themselves directly comparable.

The amplitude of the common node VOUT is lowest when
the inputs to all the oscillators are equal. Fig. 11 shows the
output amplitude of 3-synchronized oscillators. By sweep-
ing VIN1 and VIN2, there is a minimum point of amplitude
on the 2-D space that corresponds to VIN3. All those mini-
mum points of different settings of VIN3 form a continuous
line in the 3-D space.

In the simulations, up to nine oscillators can be syn-
chronized. Fig. 10d shows the output waveform of 9-syn-
chronized oscillators. For these oscillators, the synchro-
nization time increases as the number of oscillators
increases. As we go from n = 3 to n = 9, the coupling cur-
rent induced by the rising of one of the oscillators is now
shared by eight instead of two. Thus, to achieve coupling
strengths among nine oscillators equivalent to that for 3,
larger coupling capacitors CP are chosen. The enlarged CP

introduces larger coupling current to the system, shared by
more oscillators, and induce the equivalent delay to each

oscillator. As more delays occur to the oscillation, the oscilla-
tion period is extended, and thus the frequency of producing
measurable outputs from the collection of oscillators is much
lower than the frequency of the individual oscillators. The
number of cycles the oscillator array requires to stabilize
decreases with n while the period of one cycle increases. For
our configurations, the net effect is an increase in absolute
timewith n.

4.4 Phase Information
The swing of VOUT reflects the interaction of VO1 and VO2;
VOUT rises when either VO1 or VO2 rises, and falls when both
of them fall. In one cycle of the oscillation, there are two
pulses of VOUT , one for the charging of VCRO1 and the other
for that of VCRO2. Therefore, the pulses would be in the
same amplitude if VIN1 ¼ VIN2. The amplitude of the VOUT

waveform increases if one falling time is shorter than the
other, which happens when VIN1 6¼ VIN2 within the
bounded range of allowable DV where the circuit is stable.

The output of synchronized oscillations has three proper-
ties. First, the synchronized oscillators generate a stable
amplitude corresponding to the degree of match for the
inputs with low deviation. Second, inputs with high devia-
tion break synchronization, and the amplitude of VOUT

becomes non- uniform. Third, an oscillator within a coupled
oscillator network can be intentionally shut down by pro-
viding a large or small VIN out of the oscillation boundaries,
as illustrated in Fig. 8.

For inputs corresponding to the first property, the output
behavior is close to the mathematical formulation of devia-
tions (e.g., standard/absolute deviation) in the region of
synchronization. Fig. 12 shows the simulation results of the
oscillator-based deviation comparing to the corresponding
mathematical model (standard deviation). The key differ-
ence between the two deviation approaches is that the out-
put of the simulation results is less sensitive to a higher
input, which is due to the non-linearity of gm of the transis-
tor. To deal with non-synchronizing inputs, we employ
thresholding to detect peak amplitudes beyond the accept-
able range. In addition, forcing the shutdown of certain
oscillators allows an N-oscillator array to emulate K-input
functions forK < N .

Fig. 12. The VOUT amplitude 3-D plot of the mathematical deviation mod-
els (top) versus the simulation results (bottom) for the case of (a) two
inputs and (b) three inputs (VIN3 is set to 450 mV).

Fig. 11. The VOUT amplitude of three-coupled oscillators in various input
conditions.
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4.5 Amplitude Readout Circuit
Fig. 13a shows the read-out circuitry. The input to the read-
out circuit is VOUT from the synchronized oscillators, which
is DC-biased by the biasing network RB1 and RB2. The
source follower operating with IBIAS works as a buffer for
VOUT . Finally, the diode-connected transistor rectifies and
follows VSF to generate the readout voltage VANALOG at the
load capacitance CL. Fig. 13b shows the conversion from
VOUT amplitude to the analog voltage output VANALOG that
the readout circuit performs.

5 CONFIGURABLE OSCILLATOR COMPUTATIONS

As presented in the previous section, HyperFET oscillators
provide a powerful, but limited-flexibility, primitive com-
putational operation. In this section, we extend the compu-
tational capabilities of each oscillator by adding additional
control inputs to configure its behavior. With these addi-
tional inputs, we can now efficiently realize a family of
related primitives with a given oscillator network, rather
than a single functionality.

The coherence of the synchronized oscillators is defined
as the similarity of their oscillation frequencies. As men-
tioned previously in Section 4.1, the oscillation frequency of
a VCRO is determined by VIN , which is linearly correlated
to the discharging current ID,

ID ¼ IR þ IT ¼ IR þ ðgm & VIN þ I 0T Þ: (6)

Generally speaking, the relation between ID and VIN can be
configured by changing the resistance and the transistor
size. Motivated by the fact that the similar IDs induce the
similar oscillation frequencies, we explore the configurable
mapping between VIN and ID in this section.

5.1 Configurability

5.1.1 Base Case

Starting from n ¼ 2, a coupled-oscillator structure is shown
in Fig. 14a. The oscillation strength of a VCRO, which is
defined as the individual oscillation frequency when it is
not coupled, is positively correlative to the amount of the
discharging current ID. Two transistors sized W1 and W2
are acting as voltage controlled current sources, and two
resistors (RL1 and RL2) provide biasing current to the sys-
tem. In the base case, the system is biased in balance, and
the transistors have equal size. As shown in the right half
of Fig. 14b, the lowest VOUT amplitude lays on the

diagonal, which corresponds to VIN1 ¼ VIN2. The left half
of Fig. 14b shows the cutting plane of VIN1 ¼ 450 mV. For
the unbalanced inputs (VIN1 $ VIN2 ¼ DV ), the amplitude
increases with DV . The peak amplitude of VOUT stops

Fig. 13. (a) The schematic and (b) the amplitude to voltage conversion of
the readout circuit.

Fig. 14. (a) The structure of the simulated circuitry of coupled oscillators
for similarity measurement. The 2-D and 3-D plot of VOUT amplitude with
various VIN1 and VIN2 for (b) base case, (c) voltage shift on VIN2, and
(d) increased sensitivity to VIN2.
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increasing when the VCROs are no longer coupled, and
the maximum peak amplitude is around the amplitude of
VOUT1 or VOUT2.

In this work, a “similarity line” is defined as the collection
of conditions (VIN1, VIN2) forwhich the lowest VOUT amplitude
occurs. Essentially, the similarity line represents the condition
that the oscillations are exactly coherent. The similarity line
for the base case can be described as LS : fVIN1 ¼ VIN2g.
Accordingly, the circuit in Fig. 14a outputs a signal VOUT , of
which the amplitude relates to the distance between the point
ðVIN1; VIN2Þ and the corresponding similarity line.

5.1.2 Shifting Case

The biasing resistors RL1 and RL2 can be designed to be
unequal to each other, and the unbalanced biasing results in a
shift on LS . Fig. 14c shows the case for an increased RL2.
When the biasing current decreases with the enlarged resis-
tance, the total discharging current on VCRO2 drops under
the condition VIN1 ¼ VIN2. Therefore, VCRO2 oscillates
slower, and the amplitude of VOUT increases for the unbal-
anced oscillation. To cover the biasing current reduction,
VCRO2 needs a higher input voltage; i.e., a voltage shift on
VIN2 results in the same driving strength compared to
VCRO1. Effectively, VIN2 is subtracted by a value VS . As a
result, the similarity line is shifted asLS : fVIN1 ¼ VIN2 $ VSg,
where VS is the voltage shift.

5.1.3 Narrowing Case

The transistor size of the VCRO corresponds to the ratio of
current change to the input difference, and therefore effects
the sensitivity of the oscillation frequency. Fig. 14d shows
the case for an increased W2. The increase and decrease
amounts of current are proportional to the transistor size
according to Eq. (6). Therefore, a given voltage variation
induces more deviation to the output with larger transistor
size, and narrows the width of valley. As a result, the differ-
ent sensitivity factors ða1;a2Þ can be assigned to each of the
VCROs by giving different transistor sizes.

In summary, given the configurable behavior of the cou-
pled VCROs, the similarity line could be virtually a linear
combination of VIN1 and VIN2, i.e.,

LS : fa1& ðVIN1 $ VS1Þ ¼ a2& ðVIN2 $ VS2Þg: (7)

Generally speaking, the minimum amplitude at the node
VOUT occurs when the controlling currents ID of the two
oscillators are equal, giving equal, or near equal frequencies,
and enabling the oscillators to couple to a common fre-
quency with equally distributed phases.

5.2 Configurable VCRO Module
Based on the the features described in Section 5.1, we can
build configurable VCROmodules in systems of n-oscillators.
Fig. 15a shows the structure of the proposed configurable
oscillator. The discharging current ID is provided by three
components: two transistors sizedW and one resistor (RL),

ID ¼ IR þ IT ¼ IR þ gm & ðVx þ VyÞ þ I 0T : (8)

The transistor sizes of each of the synchronized oscillators
could be different to give various gm ratios to the system.

Essentially, those two transistors are replacing the tran-
sistor in the non- configurable VCRO (Fig. 14a), splitting the
input VIN to Vx and Vy. Fig. 15b shows the simulation results
of that one configurable VCRO with sweeping input condi-
tions, Vx and Vy, coupled to another with fixed input,
V 0
x ¼ V 0

y ¼ 450 mV. Observed from the simulation, the mini-

mum VOUT amplitude occurs when ðVx þ VyÞ=2 ¼ 450 mV,
which means Vx should be negatively correlated to Vy

for the same ID. Therefore, Vy can be a configurable parame-
ter that changes the correspondence between Vx and the
VOUT amplitude.

As shown in Fig. 15c, the transistor size can be flexible by
splitting the transistor into multiple switch-controlled tran-
sistors. Similarly, the resistor can be replaced by another
transistor to become reconfigurable.

5.3 Mathematical Expression
There are several useful mathematical vector operations
that can be mapped to the behavior of synchronized
VCROs. For a configurable VCRO, the voltages Vx and Vy

are in a negative correlation for the same oscillation strength
in terms of ID. To achieve the comparing function between
the input x and target y, the numerical y is inversely
mapped to voltage Vy, as shown in Fig. 15d.

To visualize the relation between the configuration
change and function change, we define the behavior of
the synchronized oscillators as the analog domain and the
parameters of configurations as the numerical domain. Specif-
ically, we are trying to map the numerical range of the
inputs, e.g., 1 to 256, to the active region of the oscillators in
terms of voltage range, e.g., 0:35 V to 0:55 V. In Fig. 16, the
analog domain and the numerical domain are marked as

Fig. 15. (a) The structure of proposed configurable VCRO module.
(b) The VOUT amplitude of the proposed configurable VCRO for various
Vx and Vy, coupled to another VCRO module with fixed input (V 0

x ¼ V 0
y ¼

450 mV). (c) The circuitry replacement for flexible resistance and equiva-
lent transistor size. (d) The mapping of X and Y from numerical domain
to analog voltage domain.
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the blue and red blocks, respectively. In the analog domain,
there is an active region with the diagonal similarity line.
For the base case, the numerical domain maps perfectly onto
the numerical domain. In the shifting case, the input is equiv-
alently subtracted by y2. Therefore, a part of the active region
is unused (not mapped), while the remaining space of the
numerical domain covers some inactive regions. In the nar-
rowing case, the input number is multiplied by a factor a2.
As a result, the extended space in numerical domain covers
larger than the active region of analog domain. Thus, the
similarity region is equivalently narrowed by a2 seen from
the numerical domain. Themapping relations above demon-
strate the reason for the shifting and narrowing in Fig. 14.

For the n-synchronized oscillators, there is a similarity
line in n-Dimensional space, indicating the condition of
exact coherence for the n- oscillator system. After the
mapping, the similarity line becomes LS : fa1ðx1$ y1Þ ¼
a2ðx2$ y2Þ ¼ , , , ¼ anðxn$ ynÞg in the n-Dimensional
space, and ai is proportional to the transistor widthWi.

The functionality of the amplitude of VOUT is the devia-
tion of the oscillation frequency, which is positively corre-
lated to IDs. If the vector inputs X and Y are on the
similarity line, the amplitude of VOUT is the minimum. Oth-
erwise, VOUT returns the deviation DðaðX $ Y ÞÞ (within the
similarity region).

Based on the properties of the proposed configurable
VCROs, the functions of an n-oscillator system include, but
are not limited to:

(I) DðXÞ ¼ ð1n
Pn

i¼1ðxi$ !xÞkÞ
1
k. Measuring the deviation

of factor k of a set of input vector X, or checking if
the deviation is above some threshold. The coeffi-
cient k is determined by the coupling and load
capacitance, and k for mathematical standard and
absolute deviation are 1 and 2, respectively.

(II) DðaXÞ: Finding the matching degree for the n ele-
ments of X to a given ratio ( 1a1 ;

1
a2 ; . . . ;

1
an). It can also

be used as the distance of the input X to the given
line when the function is extended to DðaðX $ Y ÞÞ.
Given a threshold, the oscillators would detect the
points in the cylinder region around the line.

(III) DððX $ Y Þ [ f0gÞ: Finding the similarity of two
points X and Y. Given a threshold, the oscillators
would detect the points in the ball region around Y.
The shape of the ball region can be changed when
the function is extended toDðaðX $ Y Þ [ 0Þ.

(IV) DððX $ Y Þ0Þ, ðX $ Y Þ0 ¼ fðxi$ yiÞ j ðxi$ yiÞ 2 oscillation

rangeg: Measuring the deviation of only the input
elements that are in the oscillation range.

where input vector X = (x1; x2; . . . ; xn), and configurable
parameters are:

narrowing : a ¼ ða1;a2; . . . ;anÞ;
shifting : Y ¼ ðy1; y2; . . . ; ynÞ

!

Fig. 17 shows the diagrams of the functions above.

6 CONFIGURABLE OSCILLATOR APPLICATIONS

To parallelize the repetitive computation of, for example,
image filtering, a system can be built with an array of proc-
essing units. Fig. 18a shows the system diagram of parallel
computation with 10-by-10 array of oscillator-based proc-
essing modular units, each with nine coupled oscillators.
The image with a large number of analog pixels is cap-
tured by the camera sensor, segmented into windows
which are sized the same as the number of processing
units (10-by-10), and processed by the units in parallel.
The control signals, Va and Y, can be either identical or dif-
ferent to each processing unit, depending on the applica-
tion. In most of the cases, the control signals come from
the higher level architecture, and are fixed for the repeti-
tive computations.

Each of the processing units is an independent 9-oscilla-
tor module that can perform the processing in parallel with
other modules. As shown in Fig. 18b, the 9-oscillator mod-
ule is composed of the 9-synchronized oscillators, the read-
out, and the thresholding circuits (voltage comparator).

Fig. 16. The relation between numerical domain (with numbers) and ana-
log domain (with voltage and physical behavior).

Fig. 17. The configurable functions of synchronized oscillations.
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For the image processing applications as an example,
nine input voltages (Vx1; Vx2; . . . ; Vxn), corresponding to
one center pixel and the eight neighboring pixels, are
connected to the oscillators. The control signals, in terms of
Vy and Va, configure the oscillator for the particular
functions.

6.1 Distance and Deviation
The 9-synchronized oscillators naturally perform a devia-
tion measurement by reflecting the distance between the
input point X and the similarity line in n-Dimensional
space. By fixing one of the inputs to, for example, zero, the
similarity line becomes a point in the (n-1)-Dimension, as
illustrated in Fig. 17-III.

6.2 Image Filtering
To process the pixel values of an image, as the example
shows in Fig. 18a, the oscillators are controlled by different
configuration control values to perform various functions.
Table 1 shows the configures of the oscillators for various
functions, and Fig. 19 shows the original and processed
images.

6.2.1 Salience and Edge Detection [35]

The salient point is more likely to be an edge if it locates in a
region with more deviation. Obtained by measuring the
deviation of nine neighboring pixels, a pixelwise salience
map can be used as edge information.

6.2.2 Directional Edge Detection [36]

Another edge detection approach is to detect edges in cer-
tain directions. To detect a line in, for example, the vertical
(column) direction, we can compute the deviation of three
pixels in a row direction. The higher deviation in the hori-
zontal direction indicates that the more likely it is an edge
in vertical direction.

6.2.3 Dilation and Erosion [37]

By intentionally shifting the input to the oscillation bound-
ary of the VCRO, the oscillation occurs only when the input

Fig. 18. (a) Image preprocessing with paralleled oscillator modules.
(b) The 9-oscillator module composed by the 9-synchronized configura-
ble VCRO and peripheral output circuits.

TABLE 1
The Configures of the 9-Oscillator Module for Particular Functions

function X Y a Output Notes

Salience Pixel values No shift Equal weight D(X) Pixelwise salience for
Detection x1 to x9 0’s 1’s detection edge
Dilation / Pixel values VTH þ VLB / Equal weight Oscillate?1:0 VTH : Threshold,
Erosion x1 to x9 VTH $ VUB 1’s VLB: Lower boundary

VUB: Upper boundary
Color RGB values No shift 1/(Target RGB) D(aX) = Detect color in given
Detection x1 to x3 0’s a1 to a3 D([a1x1 to a3x3]) RGB ratio

RGB [f0g Target RGB [f0g Equal weight D(X-Y) = Detect color in given
x1 to x4 y1 to y4 1’s D([x1-y1 to x4-y4]) RGB value

Pattern matching Input sequence [f0g Target pattern [f0g Importance D(a(X-Y)) = Degree of mismatch
x1 to x9 y1 to y9 a1 to a9 D([a1(x1-y1) to a9(x9-y9)]) for 8-bits pattern

Fig. 19. The input and output images of oscillator based-processing
functions.
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voltage is higher (or lower) than the threshold. The sync-
hronization doesn’t really matter; detecting any high bit
(or low bit) in a set of five pixels (central and four neigh-
bors) returns the dilation (and erosion) filtering.

6.2.4 Color Detection [38]

The color information of a pixel can be described in three
values in the R-G-B domain. Colors with the same R-G-B
ratio would appear as the same color of different brightness.
Therefore, the detection for a certain color can be done by 3-
synchronized oscillators. With 4-synchronized oscillators
(R-G-B and zero), the color range can be fixed around a spe-
cific pixel value, which can be another different application.

6.3 Weighted Pattern Matching
The X $ Y function of the configurable oscillators essen-
tially performs the matching between patterns. Independent
weights can be achieved by assigning different a’s to each
oscillators, as shown in Fig. 20. The target pattern Y is con-
figured before sliding the window. Whenever the oscillator-
based deviation module finds a matching sequence, the
thresholding circuit would output a bit-0, indicating a low
difference between X and Y occurs.

7 PERFORMANCE EVALUATION

In this section, the performance evaluation is based on the
properties and experimental results with VO2 as the RSD,
scaled to a reasonable comparative size, and projected to
the feasible operation frequency. First of all, we compare
the performance of a single 9-oscillator module with a cus-
tomized CMOS application-specific integrated circuit
(ASIC) pipelined accelerator designed to perform the same
function. Then we compare the array of 100 parallel 9-oscil-
lator modules with the CMOS-based data path from a sys-
tem prospective.

7.1 Modularized Deviation and Scalability
Fig. 21 shows the oscillator-based deviation circuit module
and the corresponding CMOS ASIC in 32 nm technology.
The proposed oscillator- based module performs the devia-
tion calculation with configurable parameters, e.g., D(a(X-
Y)). To perform the comparable function, the CMOS ASIC is

designed to calculate D(Z) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9

P9
i¼1ðzi $ 1

9

P9
i¼1 ziÞ

2
q

, where

Z = a(X-Y). The inputs X and Y for CMOS ASIC are both 9-
element arrays with 8-bit elements, and the input a is a 9-
element array with 2-bit elements. The CMOS ASIC baseline
deviation module is a 42-stage pipelined accelerator, syn-
thesized using Synopsys Design Compiler [39]. Based on
the synthesis, the CMOS ASIC module can operate up to
500 MHz, and consumes 1,100 mW.

The channel size of VO2 determines the voltage and resis-
tance, and thus changes the power consumption of the oscil-
lator-based module. Fig. 22a shows the power estimation
with the scaling of VO2 channel dimensions. In order to com-
pare the oscillator performance with 32 nm CMOS technol-
ogy, we project the power consumption for scaled oscillators
with dimensions ([W, L] = [60 nm; 36 nm]). We assume
that the critical stimulus (electric field here) required for
triggering the IMT in VO2 remains constant [23]. We also
assume that the resistance would remains constant with the
same aspect ratio. Accordingly, the power consumption is
4:84 mW per module after scaling (synchronized oscillators:
4:59 mW, read-out: 0:19 mW, thresholding: 0:06 mW).

Although the oscillation speed is inversely proportional
to the load capacitance, the phase transition time limits the
increase of the operating frequency of the 9-oscillator mod-
ules. We found in the simulation that if the oscillation
period is too short, the phase transitions of the oscillators
would possibly overlap and make the synchronization less
predictable. Consequently, we need a shorter phase transi-
tion time to make the module operates faster. Fig. 22b shows

Fig. 20. Weighted and non-weighted pattern matching functions. Fig. 21. The deviation circuit modules: oscillator-based processing
versus CMOS ASIC.

Fig. 22. The projected VO2 scaling for (a) the power estimation and
(b) the operation speed comparison between an oscillator-based devia-
tion module and a CMOS-based accelerator. (Start point is based on
experimental results.)
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the projection of operation speed. We assume that the
intrinsic phase transition time (-2 & -4 in Fig. 7) is small
compared to the RC charging time (-1 & -3) determined by
the load capacitance. The optically induced phase transi-
tions for VO2 has been reported to occur in as little as
#75 fs [40], and the electrically induced transition has been
reported as #200 ps [41] (experimentally measured) in a
similar MIT material V2O3. Therefore, the proposed oscilla-
tor-based module can operate up to 9:28M Op=s.

In summary, a single oscillator-based deviation module
operates at 1/54 speed (9:28 M

500 M), but consumes 1/227 power

( 4:84mW1;100mW) of the CMOS-based module.

7.2 System-Level Comparison
From the system prospective, the 10& 10 parallel array of 9-
synchronized oscillator modules (Fig. 18a) is used to
achieve a higher processing throughput, saving the over-
head of data conversion and transmission. Fig. 23 shows the
sensor chip data paths, with the array of 100 proposed oscil-
lator-based modules and with the conventional CMOS
ASIC accelerator. Thanks to the low gate-count of the pro-
posed 9-oscillator module (about 80 transistor counts,
approximated to 20 gates per module), it’s more likely be
embedded in the same chip with the sensor units. In the
conventional data path constructed by the ADC and off-
chip ASIC, the pixel values are converted and transmitted
before being processed.

Using multiple 9-oscillator modules in parallel, the pro-
posed oscillator-based accelerator can have a higher
throughput, and consume less power than the CMOS- based
ASIC accelerator. Table 2 shows the specification comparison
between the proposed oscillator-based and the conventional
CMOS accelerators. Operating at 500 Mpixel=s, the power for
the state-of-the-art sensor, based on [42] and [43], are 1:6 mW
for the sensor and 6 mW for the ADC. For most general-pur-
pose image sensors applications, the ADC resolution is equal
or above 8-bit, so we use 8-bit for the applications in this
work. In Fig. 23a, the proposed oscillator-based accelerator

processes the pixel values without conversion, consuming
484 mW. In Fig. 23b, the CMOS-Based data path with ADC
and ASIC consume 7:1 mW (6þ 1:1 mW), which is over 14X
the power of the former. Meanwhile, the processed results,
instead of the pixel values, are transmitted off the sensor chip.
Compared to the CMOS data path using 8-bit ADC, 1=8

(1 bit=pixel
8 bit=pixel) data transmission bandwidth are used in the oscilla-

tor-based processing.

8 RELATED WORK

Recently, the concept of using coupled oscillator systems
to perform non-standard computation has gained signifi-
cant attention. Several previous works have demonstrated
coupled oscillator systems geared towards a variety of com-
puting tasks.

In [44], [45] neural oscillators systems are shown to per-
form image segmentation based on degree of correlation.
Thoseworks focus primarily on the dynamics of neural oscil-
lator networks and how they can be applied using a software
model to accomplish the task of image segmentation. Further
work on image segmentation using coupled oscillators
appears in [46]. They explored additional coupling models
as well as additional modes of operation (frequency vs phase
locking) and coupling (fixed nearest-neighbor versus all-to-
all). Work in [47] has shown a system which utilizes both
coupled oscillators as well as cellular neural networks
(CNNs) to demonstrate contrast enhancement of images. In
that work the CNNs and oscillator networks work together
to perform the task of contrast enhancement in support of
high quality image segmentation. In addition to segmenta-
tion, other forms of image processing have been researched
using coupled oscillators. [33] further demonstrates the use
of coupled oscillators to perform additional image process-
ing tasks, edge detection and visual saliency. Using coupled
Kuramoto oscillators [48], [49], [50], that work shows how
the locking and synchronization time of a system of oscilla-
tors can be used to strongly identify edge pixels in an image
and fuzzy regions of stark contrast within an image, which
can correspond to visually salient regions.

All of the aforementioned approaches presume an array
of many oscillators connected in a fully-connected 2-D net-
work, and the stabilization is slowed by the higher order of

Fig. 23. The system with (a) embedded oscillator-based preprocessing
and (b) CMOS-based off-chip accelerator.

TABLE 2
The Specifications of the Oscillator-Based

(10& 10 Array of Oscillator Modules)
and CMOS-Based Accelerator

Oscillator-based CMOS-based

Channel Length 40 nm 32 nm
Power 484 mW 1:1 mW

(þ6 mW for ADC)
Max Throughput 928 M Op=s 500 M Op=s
Max Frame Rate & 3:5K Frame=s 1:9K Frame=s
Transmission Per Frame 262K bits=Frame 262K Byte=Frame
for 512& 512 pixels
Max Frame Rate & 110 Frame=s 59 Frame=s
Transmission Per Frame 8M bits=Frame 8M Byte=Frame
for 4 K 2 K
approximate transistor 8 K 140 K
count (35,200 gates)
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dependency among the oscillators. In contrast to the net-
work topology used in previous works, this work focuses
on a modular 9-synchronized oscillator unit in which the
oscillators are coupled through a common center node and
stabilization is faster than in a fully-connected 2-D network.

The VO2-based architectures for implementation of the
oscillator pairs have been demonstrated with RC time con-
stant model simulations based on real devices fabricated
using VO2 [3]. The work relies on arrays of oscillators cou-
pled in pairs and requires a significant portion of CMOS-
based circuitry in order to read out the values from the
array. In contrast, this work utilizes a different read-out
architecture, based on a star-connected topology in which a
single read-out node rather than each oscillator output node
should be monitored, thereby eliding the complicated read-
out circuitry of previous approaches.

Template- and pattern-matching is demonstrated using
coupled VCOs in [51]. The work details how the output of
such an oscillator array may be used to determine a degree
of match between two patches, or vectors, and therefore can
be used to detect the template, from a set of templates,
which is most similar to a test image. Extending this
idea, [52], [53] shows how such a correlation engine based
on coupled oscillators may be used to implement parts of a
much more complex image processing algorithm, HMAX,
which is used for feature extraction. The most compute-
intensive stages of the HMAX algorithm, Gabor convolution
and template correlation, are retargeted to oscillator archi-
tectures for processing. In [34], [54], arrays of coupled VCO
oscillators are demonstrated in an associative memory
architecture for image recall and reconstruction. In those
works, the addresses as well as the content of the memory
are template images, and indexing is done by finding the
template which most closely matches the input. Prior work
targets the particular compute-intensive portions of an algo-
rithm with dedicated, fixed-function oscillator accelerators.
In contrast, this work explores the possibility to offload the
repetitive computations to a single, multi-function accelera-
tor that is useful across many algorithms.

Those works demonstrate a variety of computational
tasks that have been explored using coupled oscillator
arrays. However, each of those architectures is geared spe-
cifically towards a given task. These rigid systems require
multiple oscillator arrays to handle varying computational
types as well as input sizes. This work proposes a dynamic
architecture which includes dynamic adjustment and mod-
ulation of the input using control transistors. This not only
allows online retargeting of the array towards different
computing tasks, but also supports computations not previ-
ously explored, both within and outside of the image proc-
essing domain.

9 CONCLUSION

In this work, we show how HyperFETs, an emerging device
based in IMT materials, align with three current power-
reducing trends in emerging devices and architectures,
namely steep-slope transistors, neuromorphic architectures,
and non-Boolean processing paradigms. We describe the
utility of HyperFETs as, or as part of, computational primi-
tives in each of the three paths.

We present a case study in utilizing HyperFET-based
nano-oscillators for visual computing, and validate a config-
urable circuit module of synchronized oscillators with mul-
tiple image preprocessing functions in addition to basic
deviation measurement. Using different configurations, the
response of oscillator discharging current to the input volt-
age is tunable to achieve a broader set of primitives within
the oscillator-based processing module. Scaled to a size
comparable to current CMOS technology nodes, the pro-
posed 9-oscillator module operates 54X slower, but con-
sumes 227X less power than a CMOS ASIC. The results also
show that the 10& 10 array of 9-synchronized oscillator
modules are able to provide comparable throughput
(928M Op=s), using only 1/14 power (484 uW) compared to
the CMOS-based counterpart.
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