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Abstract: In this work, we developed a comprehensive model 
for ferroelectric FET (FeFET), which can capture all the 
essential ferroelectric behaviors. Unlike previous models, 
which can describe only a subset but not all the reported 
ferroelectric behaviors, the proposed model can: i) predict 
device performance with geometry scaling; ii) quantify the 
device-to-device variation with device scaling; iii) exhibit 
stochasticity during a single domain switching; and iv) capture 
the accumulation of domain switching probability with applied 
pulse trains. This comprehensive model would enable 
researchers to explore a wide range of FeFET applications and 
guide device development, optimization and benchmarking. 
Introduction: The accelerated research activities in 
ferroelectric HfO2 based FeFET need a unified model to 
predict its major physical behaviors such as scalability, 
variation, stochasticity and accumulation of domain switching 
probability (Fig.1). However, previously reported models can 
only capture a subset of ferroelectric behaviors, limiting the 
exploration of FeFET applications. For example, the multi-
domain Preisach model [1] and the Landau-Devonshire model 
[2] fail to capture the transition from continuous to discrete 
switching with device scaling (scalability) [3], the exacerbated 
device-to-device variation with geometry scaling (variation) 
[4], and the stochasticity of single domain switching 
(stochasticity) [3-4]. Additionally, both previous models, along 
with the kinetic Monte Carlo (kMC) model [4], cannot predict 
the accumulation of switching probability under pulse trains 
(Accumulation) [3]. These phenomena have enabled design of 
FeFET based random number generators [5], neurons [6] and 
synapses for neuromorphic computing and in-memory 
computing, etc. As such, a comprehensive model is desirable.      
Model Structure: The model is based on a reported Monte 
Carlo framework [7], where the ferroelectric film is composed 
of multiple independent domains. Instead of executing the 
simulation event-by-event (domain switching) in the kMC 
model [4], the proposed model progresses in time, where the 
domain switching probability at each time step is calculated 
(Fig.2). The nucleation-limited switching model is adopted to 
describe switching in poly-crystalline HfO2 [1]. This model 
introduces a parameter ℎ ൌ ׬ 𝑡ᇱ 𝜏௜ ቀ𝐸௔,௜, 𝐸ሺ𝑡ᇱሻቁൗ 𝑑𝑡ᇱ

௧

௧೚
, where 𝜏௜  is 

switching time constant for domain i, and depends on its 
activation field 𝐸௔,௜ and the applied field 𝐸ሺ𝑡ᇱሻ. This parameter 
keeps track of all the ferroelectric history and thus is capable 
of capturing the accumulation behavior. This model is then 
solved self-consistently with the transistor charge-voltage 
equations to obtain FeFET characteristics (Fig.2).    
Scalability, Variation, Stochasticity, and Accumulation in 
FeFET: The model is first calibrated with measured metal-
ferroelectric-metal (MFM) charge-voltage (QFE-VFE) hysteresis 
loops (Fig.3a) and switching dynamics (Fig.3b). Non-saturated 
hysteresis loops caused by small applied field are successfully 
captured by the model. The switching dynamics are also 
accurately reproduced with the model. Especially, it predicts 
that the device variation becomes significant with the geometry 
scaling (2000 domains to 40 domains) due to domain switching 
stochasticity. The dynamics of a single domain switching can 

be probed in FeFET, where ultra-scaled device can be 
measured. With a large number of domains, the FeFET model 
can reproduce the measured memory window of the 28nm 
FeFET technology (Fig.4a). This calibrated model predicts the 
degradation of the array memory window due to increased 
inter-device variation with scaling (Fig.4c). This phenomenon 
has also been observed in experiment (Fig.4b). It is ascribed to 
the randomness caused by domain switching stochasticity, 
reduced number of domains, and domain inhomogeneity [4].  

The discreteness of single domain switching starts to emerge 
with device scaling. Fig.5a shows that threshold voltage (VTH) 
shift exhibits an abrupt jump above a certain write pulse 
amplitude. This abrupt switching is stochastic in nature, whose 
switching probability follows a sigmoid dependence on the 
amplitude (Fig.5c). Since the proposed model is based on a 
distributed Monte Carlo framework, it can nicely handle the 
geometry scaling and predict the stochastic switching in scaled 
devices (Fig. 5b, d). Another ferroelectric behavior is the 
accumulation of polarization under identical pulse trains. No 
models exist to date can capture this behavior. In the case of 
FeFET, the polarization accumulation causes VTH shift and 
hence drain current change, which has been utilized to 
demonstrate synaptic weight cell in large FeFETs. In scaled 
devices, it exhibits an abrupt VTH jump above a pulse number 
threshold (Fig.6a). This abrupt switching is also stochastic 
(Fig.6b) and the required pulse number for switching depends 
exponentially on the pulse amplitude (Fig.6c). The proposed 
model can qualitatively capture all the described accumulation 
behaviors (Fig.6d, e, f). This is achieved by tracking the h 
parameter (Fig.6g, h), which keeps increasing until the domain 
flips. The growth in h causes the accumulation of switching 
probability, and eventually the VTH shift in FeFET.  
Model Applications: With all the essential ferroelectric 
behaviors captured, various applications can be explored. 
Without loss of generality, two examples are presented here. 
One is the true random number generator (TRNG) by 
harnessing the entropy of the switching process in scaled 
FeFET (Fig.7a-c). To generate a single bit, a FeFET is reset 
first and then a write pulse inducing 50% switching probability 
is applied, which causes negligible bias in the generated bits. 
The other example is the analysis of AND type FeFET memory 
array (Fig.7d-f). Various write pulses are applied to the array 
and the resulting statistics collected indicate the necessary 
write conditions (shmoo plot) for successful array operation.     
Conclusion: We have developed a comprehensive model for 
FeFET and demonstrated its applications in memory array 
optimization and TRNG. Unlike previous models having 
limited applicability, the proposed model can capture key 
characteristics of FeFET, including the scalability, variation, 
stochasticity, and accumulation. Therefore, this model could be 
valuable for device optimizations and application explorations. 
References: [1] K. Ni et al., VLSI 2018; [2] A. Aziz et al., EDL 2016; 
[3] H. Mulaosmanovic et al., Appl. Mater. Interfaces 2018; [4] K. Ni 
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Fig.6. (a)/(b)/(c) and (d)/(e)/(f) show that the model can capture the
accumulation of switching probability with pulse trains. The model can
qualitatively show the exponential dependence on the pulse amplitude of
required pulse number to switch a domain. (g)/(h) Waveform shows
accumulation of switching probability with pulses, causing domain flip.

Motivation: Ferroelectric Behavior Modeling

Scalability, Variation, and Stochasticity in Ferroelectric

Fig.3. Calibration of the model with measured (a) QFE-VFE

minor loops; (b) polarization switching dynamics. Device
variation from 200 capacitors become worse with the
decrease of domain number (from 2000 to 40).

Accumulation in Ferroelectric Model Applications

Fig.1. A model for FeFET need to capture its key physical behaviors, 
which include scalability, variation, stochasticity, and accumulation.

Fig.5. (a)/(b) FeFET model captures
measured abrupt switching in scaled
device. (c)/(d) the model can predict
the stochasticity of domain switching.

Fig.7. Model applications for (i) random
number generator (RNG) and (ii) memory
array analysis. i-(a) shows the waveform to
extract random bits out of stochastic
switching process and the random bits (b)
and (c) are almost bias free. ii-(d-e) are the
model application for AND array analysis.
The shmoo plot indicates the necessary write
conditions for array operation. (f) shows the
ID distribution at different write conditions.
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Fig.2. The proposed model is a Monte Carlo framework and calculates 
switching probability for each unswitched domain at every time step.
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Fig.4. (a) Calibration of the FeFET model with
memory window; (b)/(c) measured and simulated
device variation for large and scaled devices. The
model predicts degraded variation with scaling.
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