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ABSTRACT
Sparse solver has become the bottleneck of SPICE simulators.
There has been few work on GPU-based sparse solver because
of the high data-dependency. The strong data-dependency de-
termines that parallel sparse LU factorization runs efficiently on
shared-memory computing devices. But the number of CPU cores
sharing the same memory is often limited. The state of the art
Graphic Processing Units (GPU) naturally have numerous cores
sharing the device memory, and provide a possible solution to the
problem. In this paper, we propose a GPU-based sparse LU solver
for circuit simulation. We optimize the work partitioning, the
number of active thread groups, and the memory access pattern,
based on GPU architecture. On matrices whose factorization in-
volves many floating-point operations, our GPU-based sparse LU
factorization achieves 7.90× speedup over 1-core CPU and 1.49×
speedup over 8-core CPU. We also analyze the scalability of par-
allel sparse LU factorization and investigate the specifications on
CPUs and GPUs that most influence the performance.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD)

General Terms
Performance
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1. INTRODUCTION
SPICE (Simulation Program with Integrated Circuit Empha-

sis) [1] is the most frequently used circuit simulator today. How-
ever, the rapid development of VLSI (Very Large Scale Integra-
tion) presents great challenges to SPICE simulators’ performance.
In modern VLSI, the dimension of circuit matrices after post-
layout extraction can easily reach several million. It may take
SPICE simulators days or even weeks to perform post-layout sim-
ulation on modern CPUs. The two most time-consuming steps
in SPICE simulation are the sparse matrix solver by LU factor-
ization and the model evaluation. These two steps have to be
performed iteratively for many times.
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In the last decade, Graphic Processing Units (GPU) prove use-
ful in many fields [2]. There have been works on GPU-based
model evaluation [3, 4]. The parallelization of model evaluation
in SPICE simulation is straightforward since it consists of a large
amount of independent tasks, i.e. model evaluation for each com-
ponent in the circuit. However, it is difficult to parallelize the
sparse solver because of the high data-dependency during the nu-
meric LU factorization and the irregular structure of circuit ma-
trices. To our knowledge, there has been no work on GPU-based
sparse solver for circuit simulation.
Previous works on GPU LU factorization mainly focus on dense

matrices [5–7]. Though the performance of GPU-based dense LU
factorization is very promising, up to 388 Gflop/s (Giga FLoating
point OPerations per second) on GTX 280 [6], a simple calcula-
tion shows that sparse matrices should not be factorized as dense
matrices. Take onetone2 (36k by 36k) as an example. Even if we
calculate the performance of dense factorization as 1000 Gflop/s,
it would still cost 15.5 second to factorize onetone2 as a dense
matrix, while a straightforward sequential sparse factorization on
a single core usually costs less than 1 second.
Up till now, sparse LU solvers are mainly implemented on

CPUs. SuperLU [8–10] incorporates Supernode in Gilbert / Peierls
(G/P) left-looking algorithm [11], enhancing the computing capa-
bility with dense blocks. PARDISO [12] also adopts Supernode.
Christen et al. mapped PARDISO to GPU [13]. Their work still
follows the idea of GPU-based dense LU factorization. They com-
pute dense blocks on GPU and the rest of the work is still done
on CPU.
However, it is hard to form supernodes in extremely sparse

matrices such as circuit matrices. This feature makes Supernode-
based algorithms less efficient than column-based algorithms for
circuit simulation. So in KLU [14], which is specially optimized
for circuit simulation, G/P left-looking algorithm [11] is adopted
directly without Supernode.
KLU only has the sequential version. Due to the high data-

dependency during the numerical factorization, parallel G/P left-
looking algorithm is efficient only on shared-memory computing
platforms, such as FPGA (Field Programmable Gate Array),
multi-core CPU and GPU. Several studies developed G/P left-
looking algorithm on FPGA [15–17], but the scalability to large-
scale circuits is limited by FPGA on-chip resources. Chen et al.
parallelized the algorithm on multi-core CPU [18]. Their imple-
mentation scales well with the number of CPU cores, but the
number of CPU cores sharing the same memory is often limited.
Most commodity CPUs (e.g., Intel Xeon, AMD Phenom) have no
more than 6 cores. The state of the art GPUs provide a possible
solution to the above problems. Compared with CPUs, GPUs
have far more cores sharing the same memory (e.g. GTX580
GPU has 512 CUDA cores), and higher global memory band-
width. Therefore, in this work, we for the first time present a
parallel sparse LU solver (without pivoting) for circuit simulation
on GPU. Our contributions are

• exposing more parallelism for many-core architec-

ture. We must expose enough parallelism to make the
sparse LU solver efficient on GPU (many-core architecture).
Two kinds of parallelism are proposed in [18] to describe the

1125



Figure 1: The workflow of sparse LU factorization on

GPU

parallelism between vector operations. This level of paral-
lelism alone is not enough for the thousands of threads run-
ning concurrently on GPU. We also utilize the parallelism
within the vector operations. To efficiently deal with the
two levels of parallelism, we partition the workload based
on the features of the two modes and GPU architecture.
Our strategy minimizes idle threads, saves synchronization
costs, and ensures enough threads in total.

• ensuring timing order on GPU. In parallel left-looking
algorithm, appropriate timing order must be guaranteed.
Ensuring timing order on GPU involves carefully control-
ling the number of thread groups.

• optimizing memory access pattern. (1) We design the
suitable data format of the intermediate vectors on GPU;
(2) We propose sorting the nonzeros to improve the data
locality for more coalesced accesses to global memory.

Experimental results on 36 matrices show that the GPU-based
LU solver is efficient with matrices whose factorization involves
many (more than 200M with our platforms) flops. On these ma-
trices, the GPU achieves 7.90× speedup over 1-core CPU and
1.49× speedup over 8-core CPU. For matrices with denormal
numbers [19], the speedup is even greater. We further analyze
the scalability on different CPUs and GPUs and investigate which
specifications of the devices have the greatest influence on the
performance of sparse LU solver.
The rest of this paper is organized as follows. In Section 2,

we introduce our GPU-based sparse LU factorization in detail.
Experimental results and discussion are presented in Section 3.
Section 4 concludes the paper.

2. SPARSE LU FACTORIZATION ON GPU
In this section, we present our GPU-based sparse LU factor-

ization in detail. Fig. 1 is the workflow. The preprocessing is
performed only once on CPU (Section 2.1). Numeric factoriza-
tion is done on GPU in two parallel modes, where we optimize
the workload partitioning based on the different features of the
two modes and the GPU architecture (Section 2.2). Then we dis-
cuss several important points in our GPU-based sparse LU solver,
including timing order between GPU thread groups (Section 2.3)
and the optimizations to the memory access pattern (Section 2.4).

2.1 Preprocessing
The preprocessing consists of three operations: (1) HSL MC64

algorithm [20] to improve numeric stability; (2) AMD (Approxi-
mate Minimum Degree) algorithm [21] to reduce fill-ins; (3) G/P
algorithm based pre-factorization (a complete numeric factoriza-
tion with partial pivoting) [11] to calculate the symbolic structure
of the LU factors. We denote the matrix after preprocessing as
A. In circuit simulation, the nonzero structure of A, L and U re-
mains unchanged through the iterations of numeric factorization.

Figure 2: Parallelism and timing order in parallel G/P

algorithm

2.2 Exposing More Parallelism

Algorithm 1 Sequential G/P left-looking algorithm

L = I
for k = 1 : n do

// solving Lx = b b = A(:, k) the kth column of A
x = b;
for j = 1 : k − 1 where U(j, k) �= 0 do

// Vector MAD
x(j + 1 : n) = x(j + 1 : n)− L(j + 1 : n, j) · x(j);

end for
U(1 : k, k) = x(1 : k);
L(k : n, k) = x(k : n)/U(k, k);

end for

Algorithm 1 is the sequential G/P left-looking algorithm [11].
The core operation in the algorithm is vector multiple-and-add
(MAD). Two parallel modes are proposed in [18] to describe the
parallelism between vector MAD operations, i.e. the cluster mode
and the pipeline mode. We take Fig. 2 as an example to explain
this level of parallelism. Suppose the columns in dashed circles are
already finished, and column 8, 9 and 10 are being processed. The
MAD operations represented by green solid arrows are executable.
Parallelism exists in these operations, though the operations to
the same column must be executed in a strict order.
The parallelism between MAD operations alone cannot take

full advantage of GPUs’ memory bandwidth. We utilize another
intrinsic level of parallelism in sparse LU factorization: the paral-
lelism within vector operations. Now we consider how to partition
the workload to fully utilize GPU resources. In the process, sev-
eral factors should be considered.
For convenience, we refer to the threads that process the same

column as a virtue group. Threads in a virtue group operate
on nonzeros in the same column and must synchronize. Smaller
virtue groups can reduce idle threads. But virtue groups should
not be too small for two reasons. First, too small virtue groups
result in too few threads in total (the number of columns factor-
ized simultaneously, i.e. the number of virtue groups, is limited
by the storage space and cannot be very large), which is unde-
sirable in GPU computing. Second, GPUs schedule threads in
a SIMD (Single-Instruction-Multiple-Data) manner. A group of
SIMD threads are called a warp on NVIDIA GPUs or a wavefront
on AMD GPUs. If threads within a warp diverge, all necessary
paths are executed serially. Different virtue groups process dif-
ferent columns and hence often diverge. Thus, too small virtue
groups increase divergence between SIMD threads.
Taking all the above factors into consideration, we propose the

following work partitioning strategy. In cluster mode, columns
are very sparse, so while ensuring enough threads in total, we
make virtue groups as small as possible to minimize idle threads.
In pipeline mode, columns usually contain enough nonzeros for
a warp or several warps. So the size of virtue groups matters
little in the sense of reducing idle threads. We use one warp
as one virtue group. This strategy not only reduces divergence
between SIMD threads, but also saves the cost of synchronization,
since synchronization between threads within the same warp is
automatically guaranteed by GPU’s SIMD architecture.
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2.3 Ensuring Timing Order on GPU

Algorithm 2 Pipeline mode parallel left-looking algorithm
for each work-group in parallel do

while there are still unfinished columns do
Get a new column, say column k;
Put the nonzeros of A into the intermediate vector x;
for all column j that U(j, k) �= 0 do

Wait until column j is finished;
x(j + 1 : n) = x(j + 1 : n)− L(j + 1 : n, j) · x(j);

end for
U(1 : k, k) = x(1 : k);
L(k : n, k) = x(k : n)/U(k, k);
Mark column k finished;

end while
end for

Algorithm 2 is the pipeline mode parallel left-looking algorithm.
In this parallel mode, appropriate timing order between columns
must be guaranteed. If column k depends on column t, only
after column t is finished, can column k be updated by column
t. We still use the example in Fig. 2 to explain the required
timing order. Suppose column 8, 9 and 10 are being processed,
and other columns are finished. Column 9 can be first updated
with column 4, 6, 7, corresponding to the solid green arrows. But
currently column 9 can not be updated with column 8. It must
wait for column 8 to finish. Similar situation for column 10.
Ensuring timing order on GPU deserves special attention. The

number of warps in the GPU kernel must be carefully controlled.
It has to do with the concept of resident warps on GPU [22].
Resident warps refer to warps that reside on Streaming Multipro-
cessor (SMs) and are active for execution. A GPU kernel can have
many warps. Often, due to the limited resources, some warps are
not resident at the beginning. Rather, they have to wait for other
resident warps to finish execution and then become resident.
However, in pipeline mode of sparse LU factorization, we have

to ensure all the warps to be resident from the beginning. If a
column is allocated to an non-resident warp, columns depending
on it have to wait for this column to finish. But in turn, the non-
resident warp would have no chance to become resident because
no resident warp can ever finish. This results in a deadlock. Fig.
3 is an illustration of the situation. Suppose we have issued 3
warps on a GPU that supports only 2 resident warps. There is
no problem in cluster mode, since warp 1 and 2 will eventually
finish execution so that warp 3 can start. But in pipeline mode,
column 9 and column 10 depend on column 8, which is allocated
to the non-resident warp 3, so the resident warps (warp 1 and
2) fall in dead loops, waiting for column 8 forever. This in turn
leaves no chance for warp 3 to become resident.
Therefore the maximum number of columns that can be factor-

ized simultaneously in pipeline mode is exactly the number of res-
ident warps in this kernel. This number depends on factors such
as the resource usage and the number of branches or loops [22],

Figure 3: An illustration of deadlocks resulting from

non-resident warps

Figure 4: More coalesced memory accesses after sorting

and greatly influences the performance of our GPU-based sparse
LU solver. But processing too many columns simultaneously is
also undesirable. It is likely that for a certain column, its corre-
sponding warp has nothing to do but to wait, because columns it
depends on are unfinished. (In this case, this warp still consumes
GPU cores and memory bandwidth.) Our experiments in Section
3.3 will confirm this point.

2.4 Optimization of Memory Access Pattern
Optimization for GPU-based sparse LU factorization is mainly

about memory optimization. In this subsection, we discuss the
data format for intermediate vectors, and the sorting process for
more coalesced accesses to global memory.

Intermediate Vectors’ Format. We have two alternative
data formats for the intermediate vectors (x in Algorithm 2): CSC
(Compressed Sparse Column) sparse vectors and dense arrays.
CSC sparse vectors save space and can be placed in shared mem-
ory, while dense arrays have to reside in global memory. Dense
arrays are preferred in this problem for two reasons. First, CSC
format is inconvenient for indexed accesses. We have to use Bi-
nary Search, which is very time-consuming even within shared
memory. Moreover, using too much shared memory would re-
duce the number of resident warps per SM:

resident warps per SM ≤ size of shared memory per SM

size of a CSC sparse vector

which results in severe performance degradation.
Improving Data Locality. Higher global memory band-

width is achieved on GPU if memory accesses are coalesced [22].
But the nonzeros in L and U are out of order after preprocessing,
which affects the coalesced accesses. We sort the nonzeros in L

andU by their row indices to improve the data locality. As shown
in Fig. 4, after sorting, neighboring nonzeros in each column are
more likely to be processed by consecutive threads.
In Fig. 5, we use the 21 matrices in the Group B in Table 2 to

show the effectiveness of our sorting process. On average, GPU
bandwidth is significantly increased from 37.69 GB/s to 91.17
GB/s (2.4× higher). It’s worth mentioning that CPU sparse LU
factorization also benefits from sorted nonzeros, but the perfor-
mance increase is only 1.15×. The sorting overheads are negligi-
ble, since sorting is performed only once and the time for sorting
is usually less than one factorization. We incorporate the sorting
procedure in the preprocessing stage.

Figure 5: Performance increases by sorting the nonzeros

1127



Table 1: Related specifications of different devices

Devices Xeon E5405 Xeon X5680 Radeon 5870 GTX580

Peak Bandwidth −− −− 153.6 GB/s 192.4 GB/s

Number of 2×4 2×6 20 CUs 16 SMs2

Cores = 8 cores = 12 cores 320 cores1 512 cores

Active groups −− −− 160 512

Active threads 8 8 10240 16384

L1 cache 32KB/core 32KB/core 8KB/CU 16KB/SM

L2 cache 12MB/4 cores 256KB/core 512KB/all 768KB/all

L3 cache −− 12MB/6 cores −− −−
Clock rate 2.0 GHz 3.2 GHz 850 MHz 772 MHz
1 CU = Compute Unit. In Radeon 5870, each core contains 5
processing elements (PEs). But PEs are combined for double pre-
cision floating point operations [25], so they can be regarded as a
single core in our problem.
2 SM = Stream Multiprocessor

3. EXPERIMENTAL RESULTS AND DISCUS-

SION

3.1 Experiment Setup
We test the performance of parallel sparse LU factorization on

the following four computing platforms: 2 Xeon E5405 CPUs, 2
Xeon X5680 CPUs, AMD Radeon 5870 GPU, and NVIDIA GTX
580 GPU. The experiments on CPU are implemented with C
(SSE used) on a 64-bit Linux server. Radeon 5870 is programmed
using OpenCL v1.1 [23]. GTX580 is programmed with CUDA
4.0 [22]. The related specifications of all the four devices are
listed in Table 1. 36 matrices from University of Florida Sparse
Matrix Collection [24] are used to evaluate our GPU sparse LU
factorization. Though our intention is for circuit matrices, we
also include some matrices from other applications to show that
our GPU-based sparse solver is not confined to circuit simulation.

3.2 Performance and Speedup
In Table 2, we present the performance of our GPU-based

sparse LU factorization on GTX 580 and compare with KLU and
our CPU implementation on Xeon X5680 with different number
of cores. We also intended to compare with SuperLU. But the
parallel version of SuperLU fails on more than 1/3 of the ma-
trices, and for those successfully factorized matrices, it is also
4.4× slower than our CPU implementation on average. Thus the
detailed results of SuperLU are not presented.
The listed time is only for numeric factorization, excluding pre-

processing and right-hand solving. Some data have to be trans-
ferred between CPU and GPU in every factorization (see Fig.
1). Time for these transfers are included in GPU runtime. We
find that GPU bandwidth is strongly related to the Mflops (Mega
FLoating-point OPeration) in factorization. So the average band-
width and speedup in the last row of the table do not convey much
useful information.

Figure 6: Relation between Mflops and GPU speedups

We categorize our test matrices into three groups. The first
two groups are according to the Mflops in their factorization, less
than 200M flops in Group A and more than 200M flops in Group
B. We show the relation between Mflops and GPU bandwidth
for these two groups of matrices in Fig. 6. From the figure,
we can see the GPU bandwidth is positively related to Mflops,
which indicates that in sparse LU factorization, the high memory
bandwidth of GPU can be exploited only when the problem scale
is large enough. The low bandwidth for Group A indicates that
some overheads (e.g. data transfer, launching kernels) account
for most of the runtime. For matrices in Group B, GPU achieves
7.90× speedup over 1-core and 1.49× speedup over 8-core CPUs.
Group C is in some sense special. Many denormal floating point

numbers occur when factorizing these matrices. Denormal num-
bers are used to represent extremely small real numbers. CPUs
deal with denormal numbers much slower than with normal repre-
sented numbers [19]. This is the major reason why CPU achieves
very poor bandwidth on these matrices. In contrast, the state of
the art GPUs can handle denormal numbers at the same speed as
normal numbers. So GPU speedups for these matrices are very
high. Full speed support for denormal numbers is an advantage
of GPU in sparse LU factorization and other general purposed
computing.

3.3 Scalability Analysis

Table 3: Bandwidth achieved on different devices in

GB/s

Devices Xeon E5405 Xeon X5680 Radeon 5870 GTX 580

Bandwidth Achieved 20.76 61.25 38.18 91.17

The average performance on the four devices are listed in Ta-
ble 3. The detailed performance on the 21 matrices in Group
B are presented in Fig. 7. On different platforms, the factors
that restrict the performance are different. The cache size and
speed has great influence on the performance of parallel sparse
LU factorization on CPU. But cache has little influence on GPU
performance. We have tried to declare all the variables on GPU
as ’volatile’ so that no data are cached. This only results in less
than 10% performance loss. The reason is possibly that the cache
on GPU is very small so that the cache hit rate is low even in
the original kernel. The dominant factors on GPU performance
are the peak global memory bandwidth, and whether there are
enough active threads to bring out the high bandwidth.
We have mentioned in Section 2.3 that processing too many

columns simultaneously may decrease the performance. This phe-
nomenon is not seen on CPUs, but is indeed the case with GTX
580. Presented in Fig. 8 is the achieved bandwidth on 4 matri-
ces on GTX 580 with different number of resident warps. The
best performance is attained with about 24 resident warps per
SM, rather than with maximum resident warps. This suggests we
have fully utilized the pipeline mode parallelism on GTX 580 with
24 resident warps per SM. On GTX 580, we achieve 74% peak
bandwidth at most (on twotone). Considering that the memory

Figure 7: Performance of different devices on the second

group of matrices
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Table 2: Performance of sparse LU factorization on GTX 580 and Xeon X5680
1-core 1-core CPU GPU GPU GPU speedup over CPU speedup

Matrix 1N 2nonzeros 3Mflops CPU time Bandwidth time Bandwidth over over over over
(K) (K) (s) (GB/s) (s) (GB/s) 1-core 4-core 8-core KLU

A1 hcircuit 103.2 513.1 1.0 0.016 1.76 0.006 4.57 2.60 1.22 0.99 2.45
A2 lung2 109.5 492.6 1.1 0.007 4.44 0.007 4.37 0.99 0.80 0.70 1.80
A3 circuit 4 80.2 307.6 2.5 0.016 4.24 0.018 3.79 0.89 0.38 0.30 0.74
A4 rajat21 402.0 1893.4 3.3 0.051 1.77 0.146 0.63 0.35 0.34 0.28 0.56
A5 bcircuit 67.3 375.6 5.1 0.019 7.27 0.006 23.07 3.17 1.72 1.13 4.24
A6 dc1 116.8 766.4 16.9 0.053 8.74 0.123 3.77 0.43 0.17 0.13 0.51
A7 trans4 116.8 766.4 16.9 0.054 8.56 0.123 3.77 0.44 0.20 0.13 0.54
A8 hvdc2 189.9 1347.3 19.2 0.069 7.63 0.013 41.56 5.45 3.42 2.21 23.35
A9 onetone2 36.1 227.6 94.1 0.217 11.84 0.043 59.71 5.04 1.56 0.86 10.47
A10 transient 178.9 961.8 107.8 0.306 9.64 0.109 26.92 2.79 0.92 0.53 2.63
A11 ckt11752 dc 1 49.7 333.0 144.6 0.305 12.94 0.059 67.30 5.20 1.71 0.98 0.75
A Average 6.00 9.68 1.61 0.77 0.54 1.88
B1 TSOPF RS b300 c3 42.1 4413.5 211.1 0.480 12.04 0.062 93.33 7.75 4.99 2.85 1.86
B2 epb3 84.6 463.6 267.2 0.567 12.88 0.083 87.68 6.81 2.12 1.13 6.69
B3 raj1 263.7 1302.5 340.7 0.820 11.36 0.214 43.60 3.84 1.24 0.74 452.71
B4 ASIC 680ks 682.7 2329.2 436.5 1.446 8.26 0.144 82.74 10.02 3.27 1.77 9.70
B5 thermomech TC 102.2 711.6 449.4 0.950 12.93 0.155 79.03 6.11 2.05 1.16 6.13
B6 ASIC 680k 682.9 3871.8 474.8 1.622 8.00 0.547 23.73 2.96 0.97 0.60 4.23
B7 ASIC 100k 99.3 954.2 529.6 1.253 11.55 0.265 54.68 4.73 1.51 0.85 7.47
B8 ASIC 100ks 99.2 578.9 663.0 1.465 12.37 0.168 107.81 8.71 2.34 1.28 15.22
B9 rma10 48.6 2374.0 730.6 1.513 13.21 0.209 95.52 7.23 2.84 1.50 6.89
B10 onetone1 36.1 341.1 799.8 1.370 15.96 0.208 104.94 6.58 1.94 1.09 59.74
B11 thermomech dM 204.3 1423.1 898.8 1.914 12.84 0.264 93.14 7.25 2.40 1.39 7.24
B12 venkat50 62.4 1717.8 1043.5 2.220 12.85 0.243 117.52 9.14 3.09 1.65 9.03
B13 Zhao1 33.9 166.5 1737.1 4.088 11.62 0.417 113.80 9.79 2.78 1.50 10.00
B14 thermomech dK 204.3 2846.2 3637.9 8.348 11.92 0.969 102.69 8.62 3.11 1.78 8.75
B15 crashbasis 160.0 1750.4 3933.0 10.388 10.35 1.052 102.18 9.87 3.00 1.72 9.24
B16 G2 circuit 150.1 726.7 4780.0 12.101 10.80 1.094 119.45 11.06 3.17 1.95 10.74
B17 twotone 120.8 1222.4 5245.0 13.229 10.84 1.002 143.08 13.20 3.70 2.29 66.27
B18 sme3Dc 42.9 3148.7 5291.9 12.821 11.29 1.411 102.56 9.09 2.75 1.81 8.80
B19 xenon1 48.6 1181.1 10066.3 24.802 11.10 2.047 134.47 12.12 3.77 2.40 11.83
B20 helm2d03 392.3 2741.9 13331.8 32.357 11.27 3.273 111.37 9.89 3.47 2.23 9.88
B21 denormal 89.4 1156.2 2387.1 5.676 11.50 0.510 127.94 11.13 3.27 1.79 11.14
B Average 11.54 91.17 7.90 2.58 1.49 11.73
C1 torso2 1033.5 116.0 651.4 4.243 4.20 0.184 97.02 23.11 6.09 3.20 20.13
C2 majorbasis 160.0 1750.4 3933.0 25.490 4.22 1.050 102.37 24.26 7.10 3.81 23.65
C3 ASIC 320k 321.8 2635.4 584.1 25.060 0.64 0.384 41.58 65.25 15.61 8.14 64.12
C4 ASIC 320ks 321.7 1827.8 651.6 28.470 0.63 0.170 104.52 167.02 41.07 21.25 163.28
C Average 1.63 81.06 49.72 12.90 6.77 45.78

1 the matrix dimension 2 the number of nonzeros in Matrix A
3 the number of Mega floating point operates 4 all the average values are geometric average

Figure 8: GPU Bandwidth on vs. number of resident

warps on GTX 580

accesses are not fully coalesced and that warps sometimes have
to wait, this is already close to the peak 192 GB/s. The perfor-
mance can be improved if GPU peak bandwidth increases in the
future.
On Radeon 5870, we achieve 45% peak bandwidth at most (on

xenon1 ). A primary reason is that there are too few active wave-
fronts on Radeon 5870 to fully utilize the global memory band-
width. On the two CPUs and Radeon 5870 GPU, the bandwidth
keeps increasing with the issued threads (wavefronts), as shown
in Table 4, which means the performance of our sparse LU solver

Table 4: Performance on matrices Group B on CPUs

and Radeon 5870
Devices Bandwidth achieved (GB/s)

1-core 4-core 8-core

Xeon E5405 4.99 14.41 20.38

Xeon X5680 11.54 35.38 61.22

2 wavefronts / CU 4 wavefronts / CU 8 wavefronts / CU

Radeon 5870 26.96 39.20 52.59

can be improved if there are more CPU cores sharing the same
memory, or Radeon 5870 supports more active wavefronts.

3.4 Hybrid Sparse LU solver
We have observed that matrices with few flops in factorization

are not suitable for GPU acceleration, so we propose a CPU/GPU
hybrid sparse solver for circuit simulation. The entire workflow
is shown in Fig. 9.
For an input matrix, we first factorize it on CPU with partial

pivoting [26] (this is part of the preprocessing). From the pre-
processing, we obtain the FLOPs in factorizing the input matrix,
and based on this information choose the appropriate platform
for numeric factorization. If GPU is chosen, auto-tuning is per-
formed to find the optimal number of warps to be issued. After
each iteration, we check the residual between the solutions in two
consecutive iterations. If the residual is large, we perform the pre-
processing again; otherwise, we enter the next iteration directly.
In most cases, the nonzero values do not change rapidly during
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Figure 9: The proposed workflow of CPU/GPU hybrid

sparse solver for circuit simulation.

several round of iterations. Thus the pivoting results from the
preprocessing can be used in subsequent factorizations to ensure
the numerical stability. When nonzeros values vary greatly from
previous iterations, we may consider factorizing with partial piv-
oting on CPU again. In this way the hybrid solver also solves the
problem of numerical accuracy.

4. CONCLUSIONS
This is the first work on GPU-based sparse LU factorization in-

tended for circuit simulation. We have presented our GPU sparse
solver in detail and analyzed the performance. Our experiments
demonstrate that GPU outperforms CPU on matrices with many
floating point operations in factorization.
One limitation of our GPU-based sparse LU solver is the in-

ability to handle matrices with too many nonzeros in L+U− I,
because of the relatively small global memory (1GB) of GTX 580.
Yet, current state of the art GPUs such as NVIDIA GTX590 al-
ready have 3GB global memory, which is sufficient for factorizing
most matrices. With the development of GPU, the scalability to
matrices with more nonzeros and fill-ins can be improved.
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