Efficient Pearson Correlation and
All-Pairs-Shortest-Path on GPUs for Large-scale Brain
Network Analysis

A supplement to our ICCAD 2011 paper

Ling Ren, Mo Xu
Nov 2011

Abstract

In this report, we present the GPU implementations of Pearson correlation and the
Blocked Floyd-Warshall algorithm, the two key modules in voxel-based brain network
analysis, which are not discussed in detail in our ICCAD’11 paper. Pearson correlation
is actually matrix multiplication. For Blocked Floyd-Warshall algorithm, we propose
two optimizations based on previous studies. Our methods performs well with very
large graphs, and hence is applicable in voxel-based brain network analysis.

1 Introduction

The Human Connectome is a comprehensive structural description of the connectivity of
the human brain [1]. It has attracted great research attention. A promising method is to
model the human brain as a network based on BOLD (Blood Oxygen Level Dependent)
signals acquired from fMRI (functional Magnetic Resonance Imaging) and then to employ
graph theory algorithms to analyze the network [2]. This method is known as Brain Network
Analysis (BNA).

Voxel-based BNA can take advantage of the improving resolution of the imaging tech-
nologies and provide insights into the human brain. The major challenge for voxel-based
BNA is the great computational complexity as a result of higher resolution. A voxel-scale
brain network usually contains 20K to 100K nodes. Many graph algorithms become intol-
erably time-consuming when the network gets such large. In our ICCAD paper, we have
proposed a heterogeneous (CPU/GPU) accelerator platform for voxel-based BNA. In this
report, we present more details about the GPU implementations of Pearson’correlation and
Blocked Floyd-Warshall algorithm.



2 Pearson Correlation

The Pearson’s correlation [3] between node (v;, v;) is defined as follows:

A= > (vi — o) (v; — 05)
,] -
V0= 0 S (v — )
where v; denotes the BOLD series of voxel i, v; is the average of the series of that voxel, L

is the length of time serials, and all 3 sums along the whole time series S 7.

Actually, Pearson Correlation is matrix multiplication. To show this, we first normalize
the BOLD signal

(1)

T -0
7 )

and then denote U = (71, 72 e ,71\;). The output correlation matrix is

7 =

R =UTU (3)

Matrix multiplication is very efficient on GPU, e.g 1400 Gflop/s on AMD Radeon 5870
GPU [4]. This topic has been thoroughly studied, and we do not elaborate here. Here
we discuss the scalability of correlation calculation. Since the size of brain networks are
usually very large, the correlation matrix R often exceeds the GPU memory. So we use the

blocked matrix multiplication and divide the matrix into blocks with a preset block size (e.g
2048 x2048):

U:[UluUz"' 7Um} (4)
so that
UrlrUl U"1rU2 I, UrlrUm

n_uty_ |UiUn USU, oo USUR

. L (5)
Ulu, UTU, .- ULU,

Considering the symmetry of the correlation matrix, only the upper half of the matrix
is calculated. One block is calculated each time. While this block is transferred back to the
host memory, the GPU calculates another block. This implementation can easily scale to
networks with higher resolution, without increasing the demand for graphic memory.



3 Blocked Floyd-Warshall Algorithm

In this section, we first briefly review the Block Floyd-Warshall algorithm and its GPU
implementation in previous studies, and then introduce our further optimization.

In the Block Floyd-Warshall algorithm, the whole adjacency matrix is first converted to
a N x N cost matrix C', where N is the number of the voxels. Cj; is the distance from voxel
i to voxel j, or inf if there is no such path. Then the cost matrix is divided into r n X n
sub-blocks, where r = [N/r|. The outer loop iterates over the r primary blocks (the blocks
along the diagonal of the matrix). In each of the r rounds, all blocks are updated in the
similar way with the basic Floyd-Warshall algorithm [5, 6], specifically

where element (k, k) is in the primary block. In each iteration, updating a block needs 1) the
block in the same column with itself and in the same row with the primary block, denoted
with vertical lines in Fig. 1, and 2) the block in the same row with itself and in the same
column with the primary block, denoted with horizontal lines.

!

1
_._

1l

/

Phase 1 Phase 2 Phase 3

Figure 1: Illustration of Blocked FW algorithm

The basic operations in the BFW algorithm is similar to matrix multiplication [7], or
referred to as generalized matrix multiplication. Following the ideas of GEMM, general-
ized matrix multiplication can also be implemented very efficiently on GPUs. Matsumoto
implements the APSP using generalized matrix multiplication on GPU [§].

We further propose two optimizations based on [8]. First, Phase 1 in the BFW algorithm
can be done using the basic FW algorithm. But in order to represent all computation with
generalized matrix multiplication, another algorithm with the O(n3logsn) time complexity
is adopted in [8]. Actually, it is more efficient to apply the blocked FW algorithm again for
Phase 1. In this way, we can take advantage of the module of generalized matrix multipli-
cation, without bring in any extra computation. Second, the brain is often modeled as a
symmetric network. In this case, only the upper half of the cost matrix has to be updated,
which means only 7(r+1)/2 blocks have to be updated in each round. But if only the upper
half matrix is maintained, some source blocks do not exist Fig. 1, and we need to transpose
the blocks at the symmetric location.



4

Conclusion

In this report, we present the GPU implementations of two key components in our acceler-
ating framework for brain network analysis. Our methods are efficient and scale well with
the network size.

References

1]

2]

O. Sporns, G. Tononi, and R. Ktter, “The human connectome: A structural description
of the human brain,” PLoS Comput Biol, vol. 1, no. 4, p. e42, 09 2005.

Y. He, J. Wang, L. Wang, Z. J. Chen, C. Yan, H. Yang, H. Tang, C. Zhu, Q. Gong,
Y. Zang, and A. C. Evans, “Uncovering intrinsic modular organization of spontaneous
brain activity in humans,” PLoS ONE, vol. 4, no. 4, p. €5226, 04 2009.

J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coeffi-
cient,” The American Statistician, vol. 42, no. 1, pp. 59-66, 1988.

P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and D. J., “From cuda to opencl:
Towards a performance-portable solution for multi-platform gpu programming,” Journal
of Parallel Computing, 2011.

R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6, p. 345, 1962.
S. Warshall, “A theorem on boolean matrices,” J. ACM, vol. 9, no. 1, pp. 11-12, 1962.

P. D’Alberto and A. Nicolau, “R-kleene: A high-performance divide-and-conquer algo-
rithm for the all-pair shortest path for densely connected networks,” Algorithmica, pp.
203-213, 2007.

K. Matsumoto, N. Nakasato, and S. Sedukhin, “Blocked all-pairs shortest paths algorithm
for hybrid cpu-gpu system,” in Proceedings of the 2011 IEEFE International Conference
on High Performance Computing andCommunications (HPCC ’11), 2011, pp. 145-152.



