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Abstract. Fine-grain Sleep Transistor Insertion (FGSTI) is an effective leakage 
reduction method in VLSI design optimization. In this paper, a novel Genetic 
Algorithm (GA) based FGSTI technique is presented to decide where to put the 
sleep transistors (ST) when the circuit slowdown is not enough to assign sleep 
transistors everywhere in the combinational circuits. Penalty based fitness func-
tion with a built-in circuit delay calculator is used to meet the performance con-
straint. Although optimal FGSTI problem is proved to be NP-hard, our method 
can steadily give a flexible trade-off between runtime and accuracy. Further-
more a Successive Chromosome Initialization method is proposed to reduce the 
computation complexity when the circuit slowdown is 3% and 5%. Our ex-
perimental results show that the GA based FGSTI technique can achieve about 
75%, 94% and 97% leakage current saving when the circuit slowdown is 0%, 
3% and 5% respectively. 

1   Introduction 

With the development of the fabrication technology, leakage power dissipation has 
become comparable to switching power dissipation [1]. It is known that leakage power 
may make up 42% of total power at the 90nm technology node [2]. Thus various tech-
niques are proposed to reduce the leakage power from system level down to physical 
level. Among these, Multi-Threshold CMOS (MTCMOS) technique is the most effec-
tive one, in which sleep transistors (ST) are placed between the gates and the 
power/ground (P/G) net in order to put the circuit into sleep mode when it is standby. 

MTCMOS technique can be mainly categorized into two approaches: block based 
sleep transistor insertion (BBSTI) technique [3-6] and fine-grain sleep transistor in-
sertion (FGSTI) technique [7-9]. In BBSTI, all the gates in the circuits are clustered 
into sizable blocks and then these blocks are gated using large ST; all the gates are 
assumed to have a fixed slowdown. On the other hand, FGSTI technique assigns ST 
with appropriate size to individual gates in the circuit while the circuit performance 
constraints are still satisfied as shown in Fig. 1. It is easier to guarantee circuit func-
tionality in a FGSTI technique [8], since ST sizes are not determined by the worst 
case current of large circuit blocks which is quite difficult to determine without com-
prehensive simulation [3]. In addition, FGSTI technique leads to a smaller simultane-
ous switching current when the circuit changes between standby mode and active 
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mode comparing to BBSTI technique. Furthermore, better circuit slack utilization can 
be achieved as the slowdown of each gate is not fixed, and then leads to a further 
reduction of leakage and area [7] [9]. 

 

Fig. 1. Fine-grain sleep transistor insertion technique 

The most different thing is that FGSTI technique can be performed when the circuit 
speed is not influenced, while BBSTI technique will definitely induce certain circuit 
slowdown, about 5% or more for most combinational circuits [9]. Thus the FGSTI tech-
nique is changed into a slack distribution problem to determine which gate can be as-
signed with ST. Recently, [9] use a one-shot heuristic algorithm to determine where to 
put ST in a FGSTI design, but how to perform FGSTI technique isn’t addressed when 
the circuit slowdown is 0% and the one-shot heuristic algorithm may easily fall into a 
local optimal result. Our previous work [7] presents a mixed integer programming 
(MLP) model for FGSTI technique. Since the MLP problem is proved to be NP-hard 
[10], the MLP problem for large size circuit may take unbearable time to converge. 

Ever since the genetic algorithm was introduced by Holland [11], lots of empirical 
evidences have indicated that GA can find good solutions to some complex problems. 
In this paper, a novel GA based FGSTI technique for leakage optimization is pro-
posed. Our contributions include: 

1. To our best knowledge, this is the first work to use GA based techniques to 
decide where to put ST in an FGSTI problem which is NP-hard. Penalty based 
fitness function is adopted to perform genetic search from both feasible and 
unfeasible solution space. Furthermore, our method can give a flexible trade-
off between runtime and leakage saving which is becoming more important 
while the problem size is growing up. The computation complexity of our 
method turns out to be quite stable. 

2. A Successive Chromosome Initialization (SCI) method is invented based on 
the successive attribute of the chromosome to further reduce the computation 
time. Our experiments show that this method could reduce the computation 
time significantly. 

The rest of our paper is organized as follows. The preliminaries are given in 
Section 2. The detailed genetic algorithm optimization framework is illustrated in 
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Section 3. Section 4 is devoted to our SCI method. The implementation and experi-
mental results are shown and analyzed in Section 5. Finally, we draw the conclusions. 

2   Preliminaries 

A combinational circuit is represented by a directed acyclic graph G = (V, E) where a 
vertex v V∈  represents a CMOS gate from the given library, and an edge (i, j)∈ E, i, 
j∈ V represents a connection from vertex i to vertex j. 

2.1   Leakage Current Model 

The original leakage current of gate v is denoted as Iw/o(v), while the leakage current 
of gate v assigned with ST is denoted as Iw(v). Obviously, the leakage current of gate v 
with ST depends on the ST’s size. We choose the largest ST size (W/L)v = 16 for 
simplicity, which leads to the minimum delay overhead as shown below. Due to the 
stacking effect, Iw/o(v) is about two orders of magnitude larger than Iw(v). Thus if more 
gates in the circuit are assigned with ST, more leakage saving is achieved. 

Extensive HSPICE simulations are used to create two leakage current look up ta-
bles for all the gates in the circuits to represent these two values: Iw/o(v) and Iw(v).  

2.2   Delay Model 

As shown in [12], the gate delay is influenced by the ST insertion. The load depend-
ent delay dw/o(v) of gate v without ST is given by: 
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where CL, VTHlow, α, K are the load capacitance at the gate output, the low threshold 
voltage, the velocity saturation index and the proportionality constant respectively. 
The propagation delay dw(v) of gate v with ST can be expressed as: 
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where Vx is the drain to source voltage of the ST. Suppose that ION(v) is the current 
flowing through ST during the active mode, it can be expressed as given by [9]: 
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where µn is the N-mobility, Cox is the oxide capacitance, VTHhigh is the high threshold 
voltage, (W/L)v represents the size of the ST inserted to gate v. The voltage drop Vx in 
gate v due to ST insertion can be expressed as: 
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Combining equation (1), (2) and (4), the propagation delay dw(v) of gate v with ST 
can be rewrite as: 
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(5) 

where dw/o(v) is constant which can be extracted from the technology library. Refer-
ring to equation (5), a larger (W/L)v leads to a smaller delay overhead. Here the largest 
ST size (W/L)v = 16 is still chosen which makes (( / ) )vW Lϕ  a constant. 

3   Genetic Algorithm Based FGSTI Technique 

The FGSTI problem is first formulated as a mathematical model: 

where Ileak is the total leakage current in the circuit; ST(v) is used to represent sleep 
transistor state of gate v: ST(v) = 1 means that gate v is assigned with sleep transistors, 
ST(v) = 0 means that gate v is not modified; Dcircuit is the longest path delay of the 
modified circuit; Treq represents the circuit performance constraint. Dcircuit is derived 
by a built-in longest path calculator using the delay models in Section 2. 

Genetic Algorithm is widely applicable for complex problems and makes few as-
sumptions from the problem domain; and it is not biased towards local minimums. A 
genetic algorithm based FGSTI technique is developed to solve above problem. The 
representation structure, chromosome initialization fitness function and genetic opera-
tor of our genetic algorithm are shown as follows. 

3.1   Encoding and Chromosome Initialization 

A binary vector B = (ST(v1), ST(v2), …, ST(vN)) is used as a chromosome to represent 
where to assign ST in a combinational circuit, and N refers to the total gate number. 
Apparently, if every gate in the circuit is not modified, the performance constraints 
are satisfied. Hence a chromosome (0, 0, …, 0) is a surely feasible chromosome. Sup-
pose the population size is M, the other M-1 chromosomes are randomly chosen in 
order to gain a better capability to search the whole state space. 

3.2   Fitness Function 

Penalty terms are used in our fitness functions in order to perform genetic search from 
both feasible and infeasible parts in the search space towards the global optimal re-
sults. Therefore, two terms are included in our fitness function: the total leakage cur-
rent for feasible solution and the penalty term for infeasible solution. Assuming Bk is 
the kth chromosome in the current population, N is the length of the chromosome, and 
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STk(vi) is the binary variable for each gate. The total leakage current of the circuit for 
the kth chromosome is directly derived by equation (6): 

( )/
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k k k
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= × − + ×∑  (7) 

For some chromosomes, the modification to the original circuit leads to a large to-
tal circuit delay variance which may violate the circuit performance constraints in 
equation (6). Those chromosomes project to infeasible solutions. The penalty coeffi-
cient Pk is proportional to the difference between the modified circuit delay and the 
performance required. 

0

0,                          if constraint in (6) is satisfied    

( ),   else                                           k
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where α0 is a large user-specified positive penalty value. 
Hence our fitness function can be given as: 
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where M is the population size. 
Referring to our previous work on Static Timing Analysis (STA) [13], an extended 

Breadth-first search is used to calculate the circuit delay of modified circuits. The 
computation complexity of BFS in a DAG G = (V, E) is O(V+E); thus our algorithm 
runs in time O(N), where N is the total gate number, and also the length of the chro-
mosome in our genetic algorithm. 

3.3   Elitist Selection Strategy 

The chromosomes are selected by ranking of the chromosomes according to their 
fitness from initial to final stage of genetic search. This mechanism can maintain the 
diversity of the species in the beginning of genetic search, as the fitnesses are scaled 
down so that the influence of high fitness is diminished; while at the later stage of the 
genetic search, when most of the chromosomes have similar high fitnesses, fitness 
ranking can address the effect of higher fitness and thus facilitate selection of the best 
chromosome for faster convergence [14].  

The tournament selection is adopted to preserve the best chromosome from the cur-
rent generation to the next generation.  

3.4   Chromosome Crossover and Mutation 

A “Scattered” crossover function is used; it first creates a random binary vector with 
the same length as the chromosome and then selects the genes from the first parent 
where the vector is a 1, and the genes from the second parent where the vector is a 0. 
With further research in the future, genes in the chromosome may be grouped to sev-
eral highly dependent parts due to the circuit attributes. Hence the scattered crossover 
function can be easily adapted to crossover the fixed groups of genes. 
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An adaptive mutation method is used to avoid disrupting a good chromosome 
from based on non-uniform mutation method [15]. The key idea is that mutations 
are probabilistically performed more towards the weak chromosomes in order to 
explore different regions, meanwhile the best few chromosomes are disrupted with 
much less probability than those with weak fitnesses in order to find the optimum 
solutions. This strategy is especially important at the later stage of generations. 

As shown above, the computation complexity of each generation is O(N*NC), 
where N is the chromosome length and NC is the population size. Suppose the ge-
netic algorithm takes M generation to converge to an acceptable results, the total 
complexity of our GA based FGSTI is O(M*N*NC). 

4   Successive Chromosome Initialization 

Generally speaking, the solution space of a GA problem consists of two parts: 
feasible solution region and infeasible solution region. Referring to our specialized 
GA problem, Treq which corresponds to the performance constraint, can be chosen 
from the original circuit delay to 1.05 times the original circuit delay. That is, the 
modified circuit delay may vary in the range of 5% from the original circuit delay. 
Suppose when the circuit performance is not influenced by adding sleep transistors 
to various gates in the circuits, the feasible solution region is Region A in Fig. 2. 

Obviously, every solution in Region A must be a feasible solution when the per-
formance constraint Treq changes to 1.03 and 1.05 times the original circuit delay. 
Furthermore every feasible solution of 3% circuit slowdown must be a feasible 
solution when the circuit slowdown is 5%. Thus the feasible solution regions of 
3% and 5% are represented using Region B and C respectively in Fig. 2. 

It should be clear that the solution spaces need not to be convex or continuous 
as shown in Fig. 2. Suppose solution a and b are the best individual in Region A 
and Region B respectively, which means a is the best individual when the circuit 
slowdown is 0% and b is the best individual when the circuit slowdown is 3%. 
When we solve the problem under the 3% circuit slowdown constraint, a is defi-
nitely a feasible solution. As the solution space is 2N, where N is the chromosome 
length, the possibility of which almost all the initial chromosomes are in the infea-
sible solution region is very large. It may take a long time for genetic search to 
find the feasible solution region. Naturally, it is reasonable that the best solution of 
0% circuit slowdown is used as one of the initial chromosome when the circuit 
slowdown is 0%, and this may reduce the computation complexity because a may 
be very near to b the best solution of Region B. Furthermore, we can use the last 
generation of 0% circuit slowdown as the initial generation of 3% circuit slow-
down. It is the same case that the best solution b or the last generation of 3% cir-
cuit slowdown can be used for initial point of 5% circuit slowdown. This chromo-
some initialization mechanism is called “Successive Chromosome Initialization” in 
our specialized GA problem. 

From Fig. 2 we can further confirm why using a penalty based fitness function. Sup-
pose the best solution of 5% circuit slowdown is c2, as shown in Fig. 2 the distance 
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Fig. 2. Solution space: feasible solution region for different constraints and infeasible solution 
region in grey 

between c2 and infeasible solution d is much less than the distance between c2 and 
feasible solutions a, b, c1. Since we do not know where the best solution is in the 
solution space, the genetic search should be performed from both directions: feasible 
solution region and the infeasible solution region. 

5   Implementation and Experimental Results 

ISCAS85 benchmark circuit is used to verify our GA based FGSTI technique, all the 
netlists are synthesized using Synopsys Design Compiler and a TSMC 0.18µm stan-
dard cell library. The two leakage current look up tables for all the standard cells with 
and without sleep transistors are generated using HSPICE. The values of various 
transistor parameters have been taken from the TSMC 0.18µm process library, i.e. 
VDD=1.8V, VTHhigh=500mV, VTHlow= 300mV, and ION= 200µA for all the gates in the 
circuit. The genetic algorithm are implemented using MATLAB. 

We assume (W/L)v= 16, corresponding to a delay variance of 6% if we assign sleep 
transistors to all the gates in the circuit [7]. Thus when the circuit slowdown varies in 
the range of 6% circuit original delay, we can not assign sleep transistors to every 
gate in the circuit.  

The gate number N of the circuit is also the chromosome length as shown in Table 
1, the search space of the problem is very large. When N is smaller than 1000, we set 
the population size to 200 and the max generation number to 1500; when N is larger 
than 1000, we set the population size to 500 and the max generation number to 4000. 
Table 1 shows the leakage saving using our GA based FGSTI technique; these results 
are the best ones of five runs. 

Comparing to the leakage savings with MLP method [7]: 79.8%, 94%, 95% for 
0%, 3%, 5% circuit slowdown respectively, the GA based FGSTI method is 
comparable. The MLP model for a certain circuit consists of about 7N variables and 
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Table 1. Leakage reduction using GA based FGSTI technique 

ISCAS85 
Benchmark 

Circuits 

Gate 
Number 

N 

Original 
leakage 
current 
(pA) 

0% circuit 
slowdown 

(pA) 

3% circuit 
slowdown 

(pA) 

5% circuit 
slowdown 

(pA) 

C432 169 4609 1764 479 211 
C499 204 21375 14530 1080 109 
C880 383 9261 684 318 179 

C1355 548 11874 6495 1666 806 
C1908 911 23418 3065 1027 316 
C2670 1279 35191 2081 564 372 
C3540 1699 40370 3470 1154 284 
C5315 2329 56292 2938 1008 634 

Leakage 
saving 

N/A N/A 74.8% 94.6% 97.7% 

the corresponding constraints for each variable, hence the problem size is becoming 
extremely large when the gate number increases. It is unstable since it does not 
converge well for some circuits in our experiments. However, our GA based FGSTI 
technique can give a better solution for the circuits that MLP model can not converge 
well; this leads to a larger leakage saving when the ciruit slowdown is 3% and 5%. 

In our GA based FGSTI technique, the population size and the max generation 
number are controllable; meanwhile the genetic algorithm can perform a linear scale 
down of the object function. Therefore, it is more flexible to solve this problem using 
GA compare to MLP method which is unstable and with less controllable. 

Table 2 shows the computation complexity using our Successive Chromosome Ini-
tialization method. There are two different Successive Chromosome strategies: 1. 
using the best individual as one of the initial point; 2. using the last generation includ-
ing the best individual as the initial pool. They are represented as Successive Chro-
mosome Initialization with best individual (SCI_BI), Successive Chromosome  
Initialization with last generation (SCI_LG). The population size is set to 200, the 
generation number when the best results are achieved are compared shown in Table 2. 
These results are average of five runs. As we can see, the SCI_BI strategy and the 
SCI_LG strategy is efficient compared to the original one. 

Table 2. Computation complexity comparison using generation number (Original Chromosome 
Initialization, SCI_BI, SCI_LG) 

 C432 
0% 
Slow 
down 

C432 
3% 
slow 
down 

C432 
5% 
slow 
down 

C499 
0% 
slow 
down 

C499 
3% 
slow 
down 

C499 
5% 
slow 
down 

Original 107 132 167 110 156 176 
SCI_BI N/A 37 24 N/A 117 59 
SCI_LG N/A 30 22 N/A 102 45 
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Fig. 3. Complexity analysis (Gate Number N vs Generation Number M) 

Furthermore, we look into the complexity of our GA based FGSTI technique. In this 
case, all the population size is set to 200; the search is stopped when the leakage saving 
is within 5% compared to the results shown in Table 1. Fig. 3 shows the relationship 
between the gate number N (chromosome length) and the final generation number M. 

From Fig. 3, it is shown that our genetic algorithm is stable, since all the generation 
number M is below the red line which corresponds to function 0.4*log(N)*N. From 
our previous complexity analysis, the total complexity of our GA based FGSTI is 
O(M*N*NC), where N is the chromosome length and NC is the population size, M is 
the generation number. As NC is assumed to be a constant, the computation complex-
ity of our GA based FGSTI technique is O(N*log(N)*N) based on our experimental 
results. 

6   Conclusions 

In this paper, a novel genetic algorithm based FGSTI technique is proposed, which 
can assign sleep transistors to appropriate gates in order to achieve the max leakage 
saving when the circuit is standby. Penalty based fitness function with a built-in cir-
cuit delay calculator is used to meet the performance constraint. The GA based 
FGSTI technique can achieve about 75%, 94% and 97% leakage current saving when 
the circuit slowdown is 0%, 3% and 5% respectively. Furthermore, the experimental 
results show that our SCI mechanism leads to further reduction of the computation 
time when the circuit slowdown is 3% and 5%. Our genetic algorithm is stable based 
on our complexity analysis, which is superior to the MLP approaches. 
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