
1

Making Human Connectome Faster:
GPU Acceleration of Brain Network Analysis

Di Wu∗, Tianji Wu∗, Yi Shan∗, Yu Wang∗, Yong He†, Ningyi Xu‡ and Huazhong Yang∗
∗Department of Electronic Engineering,

Tsinghua National Laboratory for Information Science and Technology, Tsinghua University
Email: {wud07,wutj06,shany08}@mails.tsinghua.edu.cn, yu-wang@tsinghua.edu.cn

† State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University
‡Hardware Computing Group, Microsoft Research Asia

Abstract—The research on complex Brain Networks plays
a vital role in understanding the connectivity patterns of the
human brain and disease-related alterations. Recent studies have
suggested a noninvasive way to model and analyze human brain
networks by using multi-modal imaging and graph theoretical
approaches. Both the construction and analysis of the Brain Net-
works require tremendous computation. As a result, most current
studies of the Brain Networks are focused on a coarse scale based
on Brain Regions. Networks on this scale usually consist around
100 nodes. The more accurate and meticulous voxel-base Brain
Networks, on the other hand, may consist 20K to 100K nodes. In
response to the difficulties of analyzing large-scale networks, we
propose an acceleration framework for voxel-base Brain Network
Analysis based on Graphics Processing Unit (GPU). Our GPU
implementations of Brain Network construction and modularity
achieve 24x and 80x speedup respectively, compared with single-
core CPU. Our work makes the processing time affordable to
analyze multiple large-scale Brain Networks.

Keywords-GPU; hardware computing; Human Connectome;
Voxel based Brain Network

I. INTRODUCTION

Recently, the descriptions of structural and functional con-
nectivity of the human brain (i.e., human connectome) have
attracted considerable attention[1]. These studies are important
for understanding the structure and function of the human
brain in health and diseases.

The human brain is structurally and functionally orga-
nized into complex networks allowing the segregation and
integration of information processing. Recent studies have
suggested that a combination of multi-modal brain magnetic
resonance imaging (MRI) techniques (e.g., structural MRI,
functional MRI and diffusion MRI) together with graph theory
approaches can help us to noninvasively map structural and
functional connectivity patterns of the human brain. These
approaches are particularly crucial in both neuroscience and
clinics since (i) they provide insights into the understanding
of the organizational principles of large-scale Brain Networks
that underlie high-level cognition, and (ii) they could of-
fer novel routes to elucidate the biological mechanisms of
brain diseases and further help us to uncover network-based
biomarkers for the diagnosis and monitoring of diseases[2],
[3], [1].

This work is supported by Microsoft Research Asia and AMD China Uni-
versity Program. This work is also partially supported by National Natural Sci-
ence Foundation of China (No.60870001), 863 project (No. 2009AA01Z130).

For instance, a recent functional MRI study demonstrates
that the topological parameters of brain functional networks
can discriminate early Alzheimer’s disease patients from
healthy elders with a high sensitivity of 72% and specificity
of 78% [4]. Although the network-based research strategy is
impressive, the detailed connectivity patterns in Alzheimer’s
disease still remain unclear since the whole brain is repre-
sented by only 90 nodes (regions) in the previous study. A
comprehensive, detailed analysis by including thousands of
network nodes derived from neuroimaging voxels is important
and necessary in the Brain Network research.

From the existing, non-invasive imaging techniques, the
brain can be represented by 20k to 100k voxels. A fine-scale
voxel based Brain Network can be constructed by measuring
the structural or functional relationship between all pairs of
image voxels. However, both the construction and analysis of
voxel level Brain Networks require tremendous computation
power. A coarse-scale region based network is built by first
average the acquired data within each brain region, then
regard each region as a network node. There is a big loss
of information in the building of region based networks.

Nowadays, much work has been done to construct and
analyze the Brain Networks, but most of them was focused
on the coarse-scale region level networks. For instance, several
studies have utilized a prior brain atlas to parcellate the brain
into tens of brain regions and then constructed region-based
Brain Networks[5], [6]. Other studies have used image voxels
to build a partial Brain Network at a fine scale[7]. Recently,
there is some work on voxel based Brain Network analysis[8].
However, some approximate algorithms (such as random walk
method) were used to avoid complex eigenvectors computation
of the correlation matrix.

According to the above, the Brain Network research is
a potential customer of high performance/low power hard-
ware computing. Figure 1 illustrates the importance of high-
performance/low-power hardware computing in the Brain Net-
work research.

The computation strategy can be divided into two categories.
In the first one, small-scale computing nodes such as personal
computers are used in hospitals, since they are convenient and
cheap for maintenance. These computers can be configured
with dedicated acceleration hardware (such as GPUs and
FPGAs) to fit the specific problem domain. In the second

2

Brain Network

Construction/Analysis/Modeling
BLAS & Graph Algorithms

Alzheimer’s

Depression

Early Diagnosis

of Brain

Diseases:

Traditional Systems

of People X # of Nodes

Power,

Heat,

Time,

etc.

50K~100K nodes

from MRI to form

a brain network

6 billion People

Domain Specific

Heterogeneous

Systems

Fig. 1. To analyze and model Brain Networks for early diagnosis of brain
diseases, we need to sample as many people as possible, with the resolution
as high as possible. However, when the number of people and the number of
Brain Network nodes increase, traditional computing systems will take either
unaffordable time (perhaps years) or unaffordable electricity power (perhaps
mega-watts). With efficient hardware computing systems, both the speed and
the power will be reasonable (perhaps days/ hundreds of watts).

category, large-scale high-performance computers are used in
research institutes. Those computers with dedicated hardware
are grouped into clusters to form a heterogeneous hardware
computing platform. Its high efficiency and computation speed
are especially crucial for the analysis of the Brain Networks
with huge sizes and a very large sample capacity.

Among the hardware computing platforms, general purpose
GPU emerges as a very powerful and low-cost parallel com-
puting platform. GPGPU has been used in many applications,
such as linear algebra, graphic or network based algorithms.
In [9], a framework for linear algebra operators on GPU is
proposed. In [10], several fundamental graph algorithms are
implemented on GPU, such as breadth first search, single
source shortest path, and all-pairs shortest path. In [11], a
method is proposed for obtaining the all-pairs shortest path
for large graphs on GPUs. However, few of them are designed
for the Brain Network Analysis.

In this paper, we, for the first time, propose a GPU based
brain network analysis framework to accelerate the analysis
of large scale Brain Networks. Under this framework, we
accelerate the construction and modularity of Brain Networks
by 24x and 80x using AMD GPU platform. Our voxel based
Brain Networks consist of 38368 nodes.

The rest of this paper is organized as follows. Section II
introduces our GPU based Brain Network analysis platform
and the key algorithms, including construction and modularity
operations. Section III proposes the GPU implementation of
these two algorithms. Experimental results are shown and
analyzed in Section IV. Section V concludes the paper and
puts forward the future work.

II. FRAMEWORK AND ALGORITHMS

In this section, we introduce our GPU framework for Brain
Network construction and analysis, and the algorithms used in
this work.

The original data is acquired from functional MRI, which
provides the blood oxygen level dependent (BOLD) signal of
each voxel at a certain spatial resolution. By sampling the

Fig. 2. Brain Network Analysis Framework

signal at a certain frequency for a period of time, we get a time
series of BOLD signal for each voxel. Hence, the data acquired
from fMRI is represented by a 4-dimension matrix: the x-, y-
and z-axis denote to the spatial position of voxels in the human
brain and the t-axis represents the BOLD sequence of a voxel.
In our experiments, the grey matter contains 𝑁𝑣 = 38368
voxels, and the BOLD signal of each voxel is 𝐿 = 230 points
in length.

A voxel-based Brain Network can be built from the BOLD
sequences of all voxels. It is a network that illustrates the
connections between these voxels. Each node in the network
represents a voxel, and each connection represents the corre-
lation between the BOLD signals of the pair of voxels. After
the Brain Network is built, graph algorithms can be applied
to analyze the network, such as network hub detection, mod-
ularity detection, small-world analysis, etc. Our framework is
illustrated in Figure 2.

In this work, we focus on the construction of Brain Net-
works and one aspect of the network analysis, i.e. modularity
detection of the network.

A. Brain Networks Construction

Here we introduce the detailed algorithm of brain-network
construction. This algorithm is used in [5], [8].

By fMRI, a series of signal of length 𝐿 is acquired for each
of the 𝑁𝑣 voxels. For each pair of nodes (voxels) (𝑣𝑖, 𝑣𝑗), we
obtain the Pearson’s correlation [12] between the series of the
pair, i.e.

𝑟𝑖,𝑗 =

∑
(𝑣𝑖 − 𝑣𝑖) (𝑣𝑗 − 𝑣𝑗)√∑

(𝑣𝑖 − 𝑣𝑖)
2 ∑

(𝑣𝑗 − 𝑣𝑗)
2

(1)

=

∑
𝑣𝑖𝑣𝑗 − 1

𝑛 (
∑

𝑣𝑖) (
∑

𝑣𝑗)√(∑
𝑣2𝑖 − 1

𝑛 (
∑

𝑣𝑖)
2
)(∑

𝑣2𝑗 − 1
𝑛 (

∑
𝑣𝑗)

2
) (2)

where 𝑣𝑖 denotes to the series of voxel i, 𝑣𝑖 is the average
of the series of that voxel, and all

∑
denotes to

∑𝐿−1
𝑡=0 , i.e.

summing along the whole time series.
From equation 2, we can see that only the term

∑𝐿−1
𝑡=0 𝑣𝑖𝑣𝑗

needs to be calculated for each pair of voxels, while the first

3

moment
∑

𝑣𝑖 and second moment
∑

𝑣2𝑖 can be calculated on
a per-voxel basis.

The absolute magnitude of correlation, i.e. 𝑟𝑖,𝑗 = ∣ ˆ𝑟𝑖,𝑗 ∣ of a
pair of voxels represents the strength of connection of the pair.
After calculating the magnitude of correlation of all pairs, we
get a symmetric correlation matrix. The matrix represents a
complete graph of all voxels with weighted edges. From the
matrix, we can quickly obtain the weight of each voxel by
summing up the weight of all edges connected with the voxel,
i.e.

𝑤𝑖 =
∑
𝑗 ∕=𝑖

𝑟𝑖,𝑗 (3)

Voxels with higher weight tend to be located in the hub regions
of the brain.

In this work, we focus on un-weighted Brain Networks,
which can be built from the correlation matrices by applying
a threshold on the weight of edges. Edges that are weighted
higher than the threshold remain to be connections in the
un-weighted network, while other edges are discarded. The
threshold should be chosen to ensure the un-weighted network
is connected and has a certain sparsity 𝑆. 𝑆 is defined to be
the ratio of existing edges in a network to the number of total
possible edges. The un-weighted network can be represented
by a sparse matrix, in which all non-zero numbers are ones,
or by an adjacency list.

Un-weighted networks are less memory-consuming com-
pared to weighted networks. In our experiment, the full
correlation matrix has the size of 38368×38368, and consumes
about 2.7GB of memory when elements are in 32-bit float type
and only half of the matrix is stored due to its symmetry. It
takes much less space to store a sparse matrix depending on
the sparsity.

Although the threshold can be applied on the fly when
calculating the correlation matrix, the amount of calculation
for obtaining a full correlation matrix can not be released.
There are 𝑁𝑝𝑎𝑖𝑟 = 𝑁𝑣(𝑁𝑣 − 1)/2 pairs. By calculating the
order 1 and 2 moments of all voxels in advance, obtaining
the correlation of each pair requires roughly 2𝐿 floating-
point operations (FLOP). Hence, the construction of a Brain
Network has 𝑂(𝑁2

𝑣𝐿) complexity.

B. Brain Networks Modularity

After constructing the voxel-base Brain Network, we exam-
ine the methods to analyze the modular organization of it using
graphic modularity algorithms. There are several methods that
are applicable to un-weighted sparse adjacent networks. A
random-walk-based method is introduced in [13], and is used
in [8]. A greedy algorithm is presented in [14], and is used in
[5].

The algorithm we choose for Brain Network community
structure detection is the eigenvector-based spectral partition
method[15]. The idea of modularity is to find groups of points
that has a lot of inner-group connections and few inter-group
connections. A benefit function 𝑄 is introduced to judge the
network’s modularity, which is defined as follow:

𝑄 =
1

2𝑚

∑
𝑖,𝑗

[𝐴𝑖𝑗 − 𝑃𝑖𝑗] 𝛿 (𝑔𝑖, 𝑔𝑗) (4)

where 𝐴𝑖𝑗 is the binary adjacent matrix representing the Brain
Network; 𝑃𝑖𝑗 is the probability for an edge to fall between
every pair of vertices 𝑖, 𝑗; 𝑔𝑖 is defined as the community to
which vertex 𝑖 belongs; 𝛿 (𝑔𝑖, 𝑔𝑗) is 1 if 𝑔𝑖 = 𝑔𝑗 and 0 if
otherwise, and 𝑚 is the number of edges in the network. 𝑃𝑖𝑗

can be defined as 𝑃𝑖𝑗 =
𝑘𝑖𝑘𝑗

2𝑚 ,where 𝑘𝑖 is the degree of node 𝑖.
When dividing the network into only two groups, we let 𝑠𝑖 be
the indicator of the division: 𝑠𝑖 = 1 if the node 𝑖 belongs to
one group and -1 if it belongs to another. Then the modularity
can be denoted as:

𝑄 =
1

4𝑚

∑
𝑖𝑗

[𝐴𝑖𝑗 − 𝑃𝑖𝑗](𝑠𝑖𝑠𝑗 + 1) (5)

=
1

4𝑚

∑
𝑖𝑗

[𝐴𝑖𝑗 − 𝑃𝑖𝑗]𝑠𝑖𝑠𝑗 (6)

The latter derivation is based on the fact that
∑

𝑖𝑗 𝐴𝑖𝑗 =∑
𝑖𝑗 𝑃𝑖𝑗 . Then Q can be rewritten to a matrix form by defining

B:
𝐵𝑖𝑗 = 𝐴𝑖𝑗 − 𝑃𝑖𝑗 (7)

a real symmetric matrix, called Modularity Matrix.
Then the problem becomes finding the best division s that

maximize 𝑄. In [15], it can be proven that the best s can be
obtained by the eigenvector u of B with the most positive
eigenvalue, i.e.

𝑠𝑖 =

{
1, if 𝑢𝑖 ≥ 0,
−1, if 𝑢𝑖 < 0

(8)

Hence, using the eigenvector corresponding to the most pos-
itive eigenvalue of B, we can divide the network into two
groups according to the signs of the elements of this eigen-
vector.

The Brain Networks are unlikely to have only two commu-
nities. A modified algorithm to handle multiple division is also
described in [15]. Firstly, the benefit function 𝑄 is modified to
Δ𝑄, which is the increment of 𝑄 before and after subdivision
of the community, thus:

Δ𝑄 =
∑
𝑖,𝑗∈𝐺

𝑐∑
𝑘=1

𝐵𝑖𝑗𝑠𝑖𝑘𝑠𝑗𝑘 −
∑
𝑖,𝑗∈𝐺

𝐵𝑖𝑗 (9)

=
𝑐∑

𝑘=1

∑
𝑖,𝑗∈𝐺

[
𝐵𝑖𝑗 − 𝛿𝑖𝑗

∑
𝑙∈𝐺

𝐵𝑖𝑙

]
𝑠𝑖𝑘𝑠𝑗𝑘 (10)

= Tr[s𝑇B(𝐺)s] (11)

where B(𝐺) has the elements:

𝐵
(𝐺)
𝑖𝑗 = 𝐵𝑖𝑗 − 𝛿𝑖𝑗

∑
𝑙∈𝐺

𝐵𝑖𝑙 (12)

Similarly, the division can be found according to the signs
of the elements of the eigenvector u corresponding to the most
positive eigenvalue 𝛽 of B(𝐺). The division maximizes Δ𝑄,
thus maximizes the contribution to the increase of 𝑄 of the
whole network. The algorithm stops when there is no positive
eigenvalue, which means there is no division that can increase
the modularity of the network.

4

III. GPU IMPLEMENTATIONS

In this section, the architecture of AMD GPU platform
is introduced first, followed by the description about the
GPU accelerated implementations of the construction and
modularity analysis of Brain Networks.

A. AMD GPUs

We choose the general purpose GPU platform from AMD,
named ATI Stream. In this section, we briefly discuss the
hardware functionality and programming model of AMD
RV870 GPUs, which belong to the latest family of AMD
GPUs. Please refer to [16] for detailed information.

1) Computation Units and Programming model: In RV870,
stream cores or ALUs are organized as 5-way VLIW proces-
sors, called thread processors. Each thread processor contains
4 normal cores that can perform 32-bit integer or floating-
point arithmetic, and 1 transcendental core that can perform
transcendental functions such as trigonometric or exponential
functions.

16 thread processors are grouped into a SIMD engine.
All thread processors in a SIMD engine performs the same
instruction at any time, but on there private registers; different
SIMD engines can perform different instructions. In a pro-
grammer’s view, the width of each SIMD engine is 64 due to
hardware switching of threads. The bundle of 64 threads that
simultaneously run on a SIMD is called a wavefront. The run
time of a wavefront is determined by the slowest thread in it.
In RV870, there are 20 SIMD engines.

There are two types of kernels (programs run on the
GPU), pixel shader (PS) and compute shader (CS). Here we
only introduce the CS, in which threads are organized in
groups. Each group consists of 1 or more wavefronts. These
wavefronts are guaranteed to be run on the same SIMD engine,
and thus can share data through the local data share memory
(LDS, introduced later). Threads in different group can not
share data through the LDS.

2) Memory Hierarchy: In RV870, several memory re-
sources can be used, each with different accessing constraints
and speed.

general purpose registers (GPRs) are the fastest memories.
Each thread has access to up to 127 GPRs in float4 type,
which is a short vector with 4 single precision floating point
elements, named x, y, z and w.

local data sharing memory (LDS) - Each SIMD engine has
a 32KB dedicated LDS memory which enables low latency
data sharing between threads in the same SIMD. On RV870,
the LDS is organized in 32−𝑏𝑎𝑛𝑘×256−𝑟𝑜𝑤 structure. Each
memory entry is 32-bit wide. Multiple threads accessing to a
same bank will result in bank conflict, and the access will
be serialized. The LDS supports random access and several
atomic operations.

off-chip graphic memory is the largest and slowest memory
resource. It supports several access models: image, UAV or
global buffer. In CS mode, we regard input-only resources
as images, since image resource supports Texture sampling,
which is cached reading from the memory to GPRs. Linear
buffers can be regarded as Uniform Access Views (UAVs) or

the Global buffer, which have read/write access for all threads.
On RV870, several UAVs are supported, however, only one
global buffer is supported. UAVs and the global buffer also
support several atomic operations.

B. Brain Networks Construction

As discussed in Section II-A, to construct a functional Brain
Network from fMRI data, we need to obtain the Pearson’s
correlation of all pairs of voxels. This operation is very
suitable for mass parallel processors such as GPUs, since
the computation of different pairs of voxels can be fully
parallelized.

Before the correlation matrix calculation, the first and
second moments, i.e.

∑𝐿−1
𝑡=0 𝑣𝑖(𝑡) and

∑𝐿−1
𝑡=0 𝑣2𝑖 (𝑡) of all

series are obtained. The moments and series of all voxels are
transferred to the graphic memory. The space requirements are
in the order of 𝑂(𝑁𝑣𝐿). The GPU kernel computes the cross
correlation term of each pair of voxels, i.e.

∑𝐿−1
𝑡=0 𝑣𝑖(𝑡)𝑣𝑗(𝑡)

for each pair (𝑖, 𝑗).
A straightforward way of implementing the construction

algorithm is to use each of GPU thread to calculate one cor-
relation. However, there are several characters and constraints
of the GPU platform that should be taken into consideration.

Algorithm 1: Construction of the Correlation Matrix
input : Series of voxels,

𝑣𝑖(𝑡), 𝑖 = 0..𝑁𝑣 − 1, 𝑡 = 0..𝐿− 1
First and second moments of series,

𝑚
(1)
𝑖 ,𝑚

(2)
𝑖 , 𝑖 = 0..𝑁𝑣 − 1

begin
Get corresponding 𝑖 and 𝑗 from Thread/Group ID
𝑡← 𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷; 𝑎𝑐𝑐← 0;
while 𝑡 < 𝐿 do

𝑎𝑐𝑐← 𝑎𝑐𝑐+ 𝑣𝑖(𝑡) ∗ 𝑣𝑗(𝑡);
𝑡← 𝑡+ 64;

end
Binary reduction of 𝑎𝑐𝑐 in LDS, the result is stored
in 𝑎𝑐𝑐 of Thread 63
if ThreadID==63 then

𝑟𝑖,𝑗 = ∣ 𝑎𝑐𝑐−𝑚
(1)
𝑖 𝑚

(1)
𝑗 /𝑛√(

𝑚
(2)
𝑖 −𝑚

(1)2
𝑖 /𝑛

)(
𝑚

(2)
𝑗 −𝑚

(1)2
𝑗 /𝑛

) ∣;
Output 𝑟𝑖,𝑗 ;

end
end

In our implementation, we use 64 threads (i.e. a wavefront)
to calculate each correlation, where 64 is the width of SIMD
engine in AMD GPUs we use. The pseudo-code of GPU
kernel is presented in Algorithm 1. Threads in a wavefront
fetch the corresponding data and calculate

∑(𝐿−1)/64
𝑘=0 𝑣𝑖(64𝑘+

𝑇𝑖𝑑)𝑣𝑗(64𝑘 + 𝑇𝑖𝑑) (where 𝑇𝑖𝑑 is the ID of threads within a
wavefront) before joining there intermediate results into one,
using binary reduction, and calculate 𝑟𝑖,𝑗 . The series of data of
each voxel is consecutively stored in graphic memory. Hence,
by using a wavefront to obtain one correlation, memory fetch
can be coalesced, illustrated in Figure 3.

5

Input buffer: v_i

Input buffer: v_j

t0 t1 t2 t3 t63Partial product

LDS reduction

Fetch data

Output buffer

Calculate correlation r_(i,j)

Write results

...

...

...

Fig. 3. Network Construction: a wavefront coalesced fetches the data of
𝑣𝑖 and 𝑣𝑗 ; each thread calculates a partial result of the dot product and
performs a wavefront-wide reduction in the LDS; thread T63 finally computes
the correlation and writes to the output buffer.

The full correlation matrix, with 𝑂(𝑁2
𝑣) space requirement,

is too large to fit into the graphic memory. Considering its
symmetry, only the upper half of the matrix is calculated.
However, it is still not applicable to invoke the GPU kernel
once and keep the results on the graphic memory before the
kernel ends. In our implementation, a fixed amount of data
is calculated for each kernel invocation. This piece of data is
transferred back on to the system memory while the GPU
kernel is invoked again for another tile of data. CPU will
post-process the tile of resultant data if we expect the binary
matrix represented as adjacency list. This implementation can
be easily scaled to build networks with higher resolution,
without the demand for higher graphic memory space.

C. Brain Networks Modularity
According to Section II-B, the community structure detec-

tion requires huge amount of computation for eigenvalues and
eigenvectors, which makes this approach impractical when the
network scale becomes extremely large. However, compared
to the variety of fast algorithm of network modularity in the
past, this approach is particularly effective in producing good
results[15].

The core operation of the modularity detection algorithm
(See Section II-B) is the computation of u and 𝛽, which is done
for each subdivision. First, we use the power method[17] to
compute the leading eigenvalue 𝛽. If 𝛽 ≥ 0, 𝛽 = 𝛽. Otherwise,
when 𝛽 < 0, we shift the matrix as B(𝐺) − 𝛽I, so that all
the eigenvalues of the new matrix are nonnegative. Hence,
𝛽 = 𝛽1 − 𝛽 is the needed eigenvalue of the original matrix,
where 𝛽1 is the leading eigenvalue of the shifted matrix, also
obtained by the power method.

By examining equation 7 and 12 more carefully, it could be
noticed that:∑

𝑙∈𝐺

𝐵𝑖𝑙 =
∑
𝑙

𝐴𝑖𝑙 − 𝑘𝑖𝑘𝑙
2𝑚

=
∑
𝑙

𝐴𝑖𝑙 − 𝑘𝑖
2𝑚

∑
𝑙

𝑘𝑙 (13)

The two sums would not change throughout the entire power
method, so they could be computed only in the beginning of
each round. The sum d is defined as follows:

𝑑𝑖 =
∑
𝑙

𝐴𝑖𝑙 − 𝑘𝑖
2𝑚

∑
𝑙

𝑘𝑙 (14)

To compute d, we first define s(k), the 𝑘th separator:

𝑠
(𝑘)
𝑖 =

{
1, if 𝑢(𝑘)

𝑖 ≥ 0,
0, if 𝑢(𝑘)

𝑖 < 0
(15)

Then d can be compute as follow:

d(𝑖) = A× s(𝑖) − k𝑇 × s(𝑖)

2𝑚
k (16)

The fact that the dimension of B(𝐺) changes in subdivisions
(See Equation 12), rendering the eigenvalue and eigenvector
computation more complicated. To solve this problem ,B′, an
𝑁𝑣-dimensional matrix is introduced:

B′ = B− 𝑑𝑖𝑎𝑔{𝑑1, . . . , 𝑑𝑛} (17)

= A− k𝑇 × k

2𝑚
− 𝑑𝑖𝑎𝑔{𝑑1, . . . , 𝑑𝑛} − 𝛽I (18)

In each iteration of power method:

Y𝑘 =
B′ ×Y𝑘−1

∥B′ ×Y𝑘−1∥2 (19)

= AY𝑘−1 − k𝑇Y𝑘−1

2𝑚
k− 𝑑𝑖𝑎𝑔{𝑑1, . . . , 𝑑𝑛}Y𝑘−1 − 𝛽Y𝑘−1

(20)

Y𝑘 is the vector of the 𝑘th iteration, 𝛽 is the leading eigenvalue
if it is negative and 0 in the beginning. We notice that we could
multiply Y𝑘−1 with s(i):

𝑦
′(𝑘−1)
𝑗 = 𝑦

(𝑘−1)
𝑗 ∗ 𝑠(𝑖)𝑗 , 𝑗 = 1 . . . 𝑛 (21)

Then we multiply the result Y𝑘 with s(i). In this way,
the dimension of B′ remains unchanged during the power
iterations.

To sum up, we re-organize Newman’s algorithm to a parallel
program. We specifically design the implementation based on
AMD GPU architecture by partitioning the serial algorithm
into several basic linear algebra operations. The system chart
of our modularity implementation is illustrated in Figure III-C.

The modularity detection algorithm is based on iterations.
Each iteration of the outer loop generates a subdivision vector
based on the eigenvector. There is also an inner loop inherent
in the power method for eigenvector calculation. Hence, the
algorithm is fundamentally serial. As a result, it is difficult
to migrate the entire algorithm to GPU platform. Instead, we
implement a finer granularity acceleration of the algorithm.
That is, we designed the basic matrix operations such as
CSR sparse matrix multiplication and vector addition and
multiplication. The general scheduling is performed by CPU
and the most time-consuming matrix calculations is done by
GPU. As the vectors and sparse matrix is loaded to GPU buffer
before the calculation and remain unchanged throughout the
computation, our approach fully utilized the GPU’s advantages
in parallel computing.

1) Eigenvalue calculation: The most resource consuming
part of the algorithm is the computation of leading eigenval-
ues, which is generally difficult when the matrix are large.
An effective method is the power method[17], in which an
approximate eigenvector is iteratively multiplied by the matrix,
until convergence. This method is particularly effective for
large sparse matrices.

6

 ! "

#

$

%

 & "
& '

()) *
+

,-./ , , "

! 0 "

 1'

 1' #

"

"

 1'
"

!
&
-
2

#

& $ &-

- -

&
,

%
" # ! 2 & 2

$
"

$
"

Fig. 4. System Chart of our GPU implementation of Newman’s Modularity
Algorithm.

In our case, although our Brain Network is represented
by sparse real-symmetric matrix, the actual matrix that need
eigenvalue computing is B(G) or B(𝐺), as we defined at Sec-
tion II-B, which is dense. Dense matrix-vector multiplication
is a time and space consuming operation. Fortunately, we find
that the computation can be divided into two parts: one of
them is multiplication between sparse matrix and vector, the
other is multiplication between vectors. The pseudo-code is
shown in Algorithm 2.

2) Partition: In the previous Section II-B, finding the
division of a network is to find s which is parallel to the
eigenvector of equation 7 corresponding to the most positive
eigenvalue. Then we defined the separators s(i) who simplified
out calculation. The final output of our modularity program is
a 𝑁𝑣×𝑀 vector group S, 𝑁𝑣 is the number of vertices in the
network and 𝑀 is the number of communities we detected.
We have

𝑆𝑖𝑗 =

{
1, if vertices 𝑗 belongs to community 𝑖,
0, otherwise

(22)

After the eigenvector computation, the ones in s(𝑖) are
divided into two groups according to the signs of each ele-
ments of the eigenvector. So the whole process of division
is performed as a top-down tree structure, each branches
will continue to divide until the biggest eigenvalue becomes
negative or less than a threshold, which we can use to control
the number of partitions. We illustrate the partition flow in
Figure III-C2.

Algorithm 2: Eigenvalue computation of Modularity
input : CSR sparse matrix A,

a 𝑁𝑣 × 1 vector s𝑖𝑛,
a 𝑁𝑣 × 1 vector k

output: float point eigenvalue 𝛽,
a 𝑁𝑣 × 1 vector s𝑜𝑢𝑡

begin
𝛽𝑏𝑖𝑎𝑠 ← 0;
d = A× s𝑖𝑛 + k𝑇×s𝑖𝑛

2𝑚 k;
while 𝑠𝑖𝑔𝑛𝑎𝑙 < 0 do

initialize x; x← x. ∗ s𝑖𝑛;
𝑑𝑒𝑔𝑟𝑒𝑒← k𝑇 × x;
while ∣𝛽 − 𝛽

′ ∣ < 𝜖 do
x

′ ← x; 𝛽
′
= 𝛽;

y← A× x;
y← y − 𝑑𝑒𝑔𝑟𝑒𝑒 ⋅ k− d. ∗ x− 𝛽𝑏𝑖𝑎𝑠x;
y← y. ∗ s𝑖𝑛;
𝛽 ← ∥y∥2;
x← y;

end
if 𝑚𝑎𝑥∣𝑥𝑖∣ ⋅𝑚𝑎𝑥∣𝑥′

𝑖∣ > 0 then 𝑠𝑖𝑔𝑛𝑎𝑙← 1;
else 𝑠𝑖𝑔𝑛𝑎𝑙← −1;
𝛽𝑏𝑖𝑎𝑠 ← 𝑠𝑖𝑔𝑛𝑎𝑙 ⋅ 𝛽;

end
for 𝑖← 0 to 𝑁𝑣 − 1 do

if 𝑥𝑖 > 0 then 𝑠
(𝑜𝑢𝑡)
𝑖 ← 1;

else 𝑠
(𝑜𝑢𝑡)
𝑖 ← 0;

end
end

 !

!

"#
$

%&'
$

%&'
$

(

Fig. 5. Data input & output flow chart of our modularity implementation.

IV. EXPERIMENTAL RESULTS

The computing platform in our experiments has a quad-core
Phenom II 956 CPU running at 3.4GHz, 8GB DDR3 memory,
a Radeon HD 5870 graphic card with RV870 core at 850MHz
and 1GB GDDR5 memory. Our GPU kernels are written in
ATI Intermediate Language (IL) [16].

A. Construction

The data we use in our experiments are acquired from
BOLD fMRI scanning. For now, we only handle the grey

7

matter of human brain, which contains 𝑁𝑣 = 38368 voxels
at 3mm resolution.

Table I shows the comparison of running time for con-
structing Brain Networks between our GPU implementation
and single-core CPU. To better analysis the performance
and bottlenecks of the GPU implementation, we divide the
execution time into several parts. The Moments time is the
cost of 1st and 2nd moments calculation including the transfer
cost of MRI data to the GPU memory. The adjacent list
computing time includes correlation calculation, data transfer
and threshold applying. The Correlation time is the running
time of GPU kernel function, and the Transfer time is the cost
of transferring correlations to CPU, as is described in Section
III-B. Threshold applying is performed by CPU, so the costs
are identical between single-core CPU and GPU implemen-
tations. The experimental results show that our accelerated
GPU implementation achieves a 29x speedup in correlation
computing and a 24x speedup overall.

TABLE I
BRAIN NETWORKS CONSTRUCTION SPEED COMPARISON (IN SECONDS)

Moments Adjacent list TotalCorrelation Transfer Threshold
GPU 0.04 32.35 3.33 6.41 42.13
CPU 0.10 1020.33 6.04 1026.47

Speedup 2.5x 28.6x 24.4x

There are two main restraints to our GPU implementation
for a better speedup. First of all, there are massive memory
fetch operations compared with simple ALU operations. There
are ⌈230/64⌉ = 4 read operations in each thread and one
global memory write operation in each wavefront. Secondly,
the parallel ’mapping’ parts are too simple compared with the
serial ’reduction’. As described in Section III-B, each thread
performs the multiplication of at most 4 pairs of elements, but
the 64th thread in the wavefront performs 6 times of LDS fetch
and addition as well as the calculation of the entire Equation
2.

However, we can improve the performance of our imple-
mentation by utilizing multiple GPU platforms. Theoretically,
only the correlation calculation would be influenced. Ideally,
when we use 2 identical GPU platforms, the data transfer
time would be doubled and the kernel function time would be
halved. Based on these assumptions, we could achieve a 45x
speedup in correlation calculation and a 35x speedup overall
for network construction.

B. Modularity

The modularity computation costs a considerable time and
divides the network in to thousands of communities. The
CPU version requires so much time that we cannot finish
the full division of the network. In response to that, we
truncate the calculation to the first 100 iterations and compare
the single-core CPU results with GPU. Table II shows the
speed comparison. (Note: iterations are of the outer loop of
Algorithm 2.)

In practical, we prefer detecting the most significant parts
of the Brain Network rather than dividing them to the smallest

TABLE II
BRAIN NETWORKS MODULARITY SPEED COMPARISON (IN SECONDS)

CPU RV870 Speedup
First 100 iterations 74496.97 928.73 80x
Slowest iteration 2515.55 31.68 79x
Fastest iteration 3.78 0.29 13x

groups. Therefore, we want to control the number of subgroups
produced by the modularity algorithm. This is done by setting
up a eigenvalue threshold, 𝑟𝑒. A branch of division is termi-
nated when the eigenvalue is below the threshold rather than
below 0. That is to say, we end the division when it provides
not necessarily no benefits to the modularity of the entire
network, but when the benefits is less than expected. However,
we should point out that this approach does not suffice
the optimal division under our ”expectation”. The reason is
that our modularity method is a kind of greedy-algorithm
which means each division is local optimum yet does not
guarantee global optimum. This is discussed at length in [15].
Nevertheless, despite the possibility of slight inaccuracy, the
general image provided by our method is acceptable. Table III
shows the relationship between the eigenvalue threshold and
the number of partitions of the network.

TABLE III
EIGENVALUE THRESHOLD AND DIVISIONS UNDER 𝑟𝑡ℎ = 0.75

Eigenvalue Threshold (𝑟𝑒) Divisions Time (sec)
100 225 928.73
110 49 906.08
125 28 496.31
130 20 441.64
140 7 116.55
150 7 113.79
200 4 78.26

Table IV shows the profiling of our GPU implementation of
Network Modularity. The results are calculated for networks
constructed under 𝑟𝑡ℎ = 0.78 , and the number of divisions
is controlled by eiganvalue threshold 𝑟𝑒. From the results
we can see that the Sparse Matrix and Vector multiplication
(SPMV) takes most of the time in the program. Our SPMV
and basic vector operations are optimized for AMD GPU
platforms. The implementation details and results of our GPU
implementations of SPMV and vector operations are discussed
in [18]. Furthermore, the data transfer costs little time in our
implementation. The input data are the sparse adjacent matrix
of the Brain Network, and the output data are the partition
vector. As a result, the performance of our implementation
can be further improved by multiple GPU platforms in the
same way as discussed in Section IV-A.

TABLE IV
PROFILING OF THE GPU IMPLEMENTATION OF NETWORK MODULARITY

UNDER 𝑟𝑡ℎ = 0.78

Divisions Data Input SPMV Vector OPs Data Output Total
305 0.22 1734.78 266.33 0.78 2002.11
42 0.22 452.37 49.80 0.09 507.48
9 0.22 168.98 14.11 0.01 183.32

By mapping the partition results to the grey matter on the

8

human brain, we can display the actual position of each groups
in pictures. Here we draw the images of the modularity of
𝑟𝑒 = 200 and 𝑟𝑡ℎ = 0.75 when 4 subparts are obtained from
the computation, as is illustrated in Figure 6.

(a) x-y plane

(b) y-z plane

Fig. 6. Dividing the Brain Network into 4 parts: each part corresponds to
one row in the figure, marked as bright white.

V. CONCLUSION

In this work, we propose a novel approach of accelerating
the computation of Brain Networks’ construction and analysis.
We implemented the network construction and modularity
analysis and achieved considerable speedups on both algo-
rithms. Our work provides a solution against the computational
limits that impede the study of voxel-based Brain Network.

In constructing the voxel-based Brain Network, we provide
a higher resolution picture of the human brain. The smaller the
scale of unit in the network is, the more accurate the results
can be. While giving more accurate positions of the potential
hubs in the network, we greatly reduce the time of voxel-based
Brain Network construction.

The modularity of voxel-based Brain Network provides
a clear picture of the connectivity pattern of human brain
cells. In the past, most of the research on the functional
characteristics of the brain has been based on the anatomical
segmentation. The modularity of voxel-based Brain Network
gives a new way to find the community structure of the
brain based on the connectivity information of each voxels.

Our acceleration of the algorithm overcomes the computation
obstruction and, more importantly, produces better and more
detailed results.

There is a myriad of Brain Network analytic methods
that can be accelerated. We are going to form a long-term
cooperation with Brain Network researchers and keep on the
work of acceleration. Our implementation of Brain Network
construction and modularity can be improved as well. For
instance, in each division it is redundant to calculate the
entire 𝑁𝑣 × 𝑁𝑣 matrix. The algorithm can be optimized.
Moveover, our implementation can be extended to multiple
GPU platforms to further improve performance.

REFERENCES

[1] O. Sporns, G. Tononi, and R. Ktter, “The human connectome: A
structural description of the human brain,” PLoS Comput Biol, vol. 1,
no. 4, p. e42, 09 2005.

[2] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems,” Nat Rev Neurosci, vol. 10,
pp. 186–198, 2009.

[3] Y. He, Z. Chen, G. Gong, and A. Evans, “Neuronal networks in
alzheimer’s disease,” Neuroscientist, vol. 15, no. 4, pp. 333–350, 2009.

[4] K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D. Greicius, “Net-
work analysis of intrinsic functional brain connectivity in alzheimer’s
disease,” PLoS Comput Biol, vol. 4, no. 6, p. e1000100, 06 2008.

[5] Y. He, J. Wang, L. Wang, Z. J. Chen, C. Yan, H. Yang, H. Tang,
C. Zhu, Q. Gong, Y. Zang, and A. C. Evans, “Uncovering intrinsic
modular organization of spontaneous brain activity in humans,” PLoS
ONE, vol. 4, no. 4, p. e5226, 04 2009.

[6] J. Wang, L. Wang, Y. Zang, H. Yang, H. Tang, Q. Gong, Z. Chen,
C. Zhu, and Y. He, “Parcellation-dependent small-world brain functional
networks: a resting-state fmri study,” Human Brain Mapping, vol. 30,
no. 5, pp. 1511–1523, 2009.

[7] D. A. Fair, A. L. Cohen, J. D. Power, N. U. F. Dosenbach, J. A. Church,
F. M. Miezin, B. L. Schlaggar, and S. E. Petersen, “Functional brain
networks develop from a local to distributed organization,” PLoS Comput
Biol, vol. 5, no. 5, p. e1000381, 05 2009.

[8] M. Valencia, M. A. Pastor, M. A. Fernández-Seara, J. Artieda, J. Mar-
tinerie, and M. Chavez, “Complex modular structure of large-scale brain
networks,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 19, no. 2, p. 023119, 2009.

[9] J. Krüger and R. Westermann, “Linear algebra operators for gpu
implementation of numerical algorithms,” in SIGGRAPH ’05: ACM
SIGGRAPH 2005 Courses. New York, NY, USA: ACM, 2005, p. 234.

[10] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the gpu using cuda,” High Performance Computing, vol. 4873, pp. 197–
208, 2007.

[11] G. J. Katz and J. T. Kider, Jr, “All-pairs shortest-paths for large
graphs on the gpu,” in GH ’08: Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2008, pp.
47–55.

[12] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the
correlation coefficient,” The American Statistician, vol. 42, no. 1, pp.
59–66, 1988.

[13] P. Pons and M. Latapy, “Computing communities in large networks using
random walks,” Journal of Graph Algorithms and Applications, vol. 10,
no. 2, pp. 191–218, 2006.

[14] M. E. J. Newman, “Fast algorithm for detecting community structure in
networks,” Phys. Rev. E, vol. 69, no. 6, p. 066133, Jun 2004.

[15] ——, “Finding community structure in networks using the eigenvectors
of matrices,” Phys. Rev. E, vol. 74, no. 3, p. 036104, Sep 2006.

[16] ATI Intermediate Language (IL) Specification, Advanced Micro Devices,
Inc., Dec 2009.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” 1999.

[18] T. Wu, B. Wang, Y. Shan, F. Yan, Y. Wang, and N. Xu, “Efficient
pagerank and spmv computation on amd gpus,” in Proceedings of
the 39th International Conference on Parallel Processing (ICPP-2010),
2010.

	I Introduction
	II Framework and Algorithms
	II-A Brain Networks Construction
	II-B Brain Networks Modularity

	III GPU Implementations
	III-A AMD GPUs
	III-A1 Computation Units and Programming model
	III-A2 Memory Hierarchy

	III-B Brain Networks Construction
	III-C Brain Networks Modularity
	III-C1 Eigenvalue calculation
	III-C2 Partition

	IV Experimental Results
	IV-A Construction
	IV-B Modularity

	V Conclusion
	References

