
Efficient PageRank and SpMV Computation on AMD GPUs

Tianji WU∗, Bo WANG∗, Yi SHAN∗, Feng YAN†, Yu WANG∗ and Ningyi XU‡

∗Department of Electronic Engineering, Tsinghua National Laboratory for Information Science and Technology,

Tsinghua University, Email: {wutj06,wangb06,shany08}@mails.tsinghua.edu.cn, yu-wang@tsinghua.edu.cn
†Department of Computer Science, Purdue University, Email: yan12@purdue.edu

‡Hardware Computing Group, Microsoft Research Asia, Email: xu.ningyi@microsoft.com

Abstract—Google’s famous PageRank algorithm

is widely used to determine the importance of web

pages in search engines. Given the large number of

web pages on the World Wide Web, efficient compu-

tation of PageRank becomes a challenging problem.

We accelerated the power method for computing

PageRank on AMD GPUs. The core component

of the power method is the Sparse Matrix-Vector

Multiplication (SpMV). Its performance is largely

determined by the characteristics of the sparse

matrix, such as sparseness and distribution of non-

zero values. Based on careful analysis on the web

linkage matrices, we design a fast and scalable

SpMV routine with three passes, using a modified

Compressed Sparse Row format. Our PageRank

computation achieves 15x speedup on a Radeon

5870 Graphic Card compared with a PhenomII

965 CPU at 3.4GHz. Our method can easily adapt

to large scale data sets. We also compare the

performance of the same method on the OpenCL

platform with our low-level implementation.

Keywords-PageRank; SpMV; GPU; OpenCL

I. INTRODUCTION

Nowadays, search engines play a central role in

extracting useful information from the World Wide

Web. When a search engine returns a list of relevant

web pages for a given query, it is crucial to determine

the qualities of these pages. The PageRank algorithm

is an effective algorithm to address this problem. It

analyzes the linkage information between web pages

to obtain the PageRank values of web pages, which

indicate the page importance.

The current Internet has hundreds of billions of web

pages. Efficient PageRank computation for all pages is

This work was supported by National Science and Technology
Major Project, 2010ZX01030-001-001-04, NSFC (No.60870001),
863 program of China (No. 2009AA01Z130), TNList Cross-
discipline Foundation, and AMD/MSRA UR project.

a challenging problem. Mathematically, the PageRank

computation is a numerical linear algebra problem that

computes the eigenvector corresponding to the largest

eigenvalue of the linkage matrix. Many methods have

been proposed in the past decades. The most widely

used method is the power method [1], which iteratively

performs sparse matrix-vector multiplication (SpMV),

an important subroutine in numerical linear algebra.

In recent years, the graphic processing units (GPUs)

have become popular for general purpose comput-

ing. GPUs are massively parallel devices with high

computation performance and high power efficiency.

A lot of research has been focused on accelerating

SpMV with GPU previously. However, we find that

general purpose SpMV routines do not perform well

in PageRank.

In this paper, we analyze the characteristic of the

sparse matrices used in PageRank, and introduce a fast

SpMV implementation using a modified Compressed

Sparse Row (CSR) format. The linkage matrices used

in PageRank are always very sparse, with highly un-

even row sizes (number of non-zero values in a row

of a matrix). Based on the row sizes, we sort the rows

into three bins, and assign different number of threads

to process the rows in different bins. Thus improves

load balance and hardware resource utilization.

Our SpMV subroutine is implemented on the AMD

GPU architecture using AMD Compute Abstraction

Layer (CAL) and Intermediate Language (IL) as well

as the newly released OpenCL, which is a promising

standard for heterogenous parallel computing. Our

experiment of PageRank using a few datasets shows

that our method brings up to 15x speedup compared

to CPU and outperforms some other GPU methods. We

also compare the performance between IL and OpenCL

based implementations. The results show that the gap

between OpenCL and IL varies with the algorithms.

Kernels generated by OpenCL compiler is not quite ef-

ficient compared to hand-written IL kernels. Generally,

data intensive algorithms have better performance with

OpenCL, since memory access can cover the drawback

of not-well-optimized ALU instructions. In the final

part of this paper, we discuss the scalability of our

method. Since the throughput (up to 17GB/s) exceeds

the bandwidth of PCIe, the kernel execution time can

not effectively cover the time to transfer data, if the

whole dataset can not stay in the graphic memory.

A solution is to add more graphic cards or computer

nodes, and to partition the matrix. However, from the

view of a single card, the problem is similar to that of

a smaller data set. Therefore, our method is applicable.

The remainder of this paper is organized as follows.

Section II gives a review on related works. Section

III briefly introduces the power method of PageRank

algorithm and SpMV computation. Section IV gives

a brief introduction to the AMD RV870 GPU. The

optimized implementation of PageRank is discussed in

Section V. The experiment results are presented and

discussed in Section VI. Section VII concludes this

work.

II. RELATED WORKS

Previous research on PageRank acceleration focuses

on parallel computer clusters and computing algo-

rithms. How to minimize communication overhead and

achieve faster convergence speed is usually the focus.

For example, Zhu et al. [2] used iterative aggregation-

disaggregation method to increase the convergence

speed. Wicks and Greenwald utilized domain infor-

mation to rearrange the linkage matrix, and reduced

the number of sparse matrix-vector multiplication,

resulting reduced computation workload and commu-

nication overhead [3]. Wang and DeWitt considered

very large-scale PageRank computation [4]. They pro-

posed programming framework to support PageRank

computation on a large number of connected low-

cost computers. To the best of our knowledge, there

is no literature on GPU acceleration of PageRank

computation.

The most time consuming part of PageRank is

SpMV computation which has already been acceler-

ated by different methods, for instance, the one-thread-

one-row (1T1R) method on NVIDIA GPU[5]. How-

ever, the running time of a thread group depends on

the slowest thread in it, which makes the computation

less efficient. [5] also proposed a scan-based method,

and the primitive operation of which, segmented scan,

is realized in CUDA Data Parallel Primitives Library

(CUDPP). In this method, multiplications and addi-

tions are separated, so do gathering and accumulation.

It is good in load balancing, but requires extra spaces

for the intermediate data. And the space requirement

is in the same order of non-zero values. Another

method is the one-warp-one-row (1W1R) on, which

is proposed in [6], [7], and has been implemented on

NVIDIA GPU and CELL platform. The experimental

results show great performance gain, however, this

method potentially wastes a large number of threads

when the matrix is very sparse, like those in PageRank.

On ATI Stream platform, there is an example of SpMV

provided with AMD Stream SDK. It uses ITPACK

format [8] to store the matrices, which we believe

to be not suitable for large-scale web linkage data

sets. The space requirement of the ITPACK is the

largest number of non-zero values in all rows of the

linkage matrix multiplied by the number of rows. If the

numbers of non-zero values in rows are highly uneven,

the ITPACK format will result in high usage of device

memory. Moreover, our experiments show that neither

1T1R nor 1W1R achieves very notable performance

for PageRank on AMD GPUs. It is because these

general SpMV methods do not address the special

characteristics of web linkage matrices.

III. THE POWER METHOD OF PAGERANK

ALGORITHM

In this section, we give a concise description of the

PageRank algorithm [1] used in our implementation.

Suppose we need to rank Nrow web pages. Let R
be a Nrow-dimension column vector, and ||R|| = 1.

We want to solve Ri, which is the importance value

(PageRank value) of the ith page. The PageRank

algorithm solves the problem R = cAR to obtain R,

where c is the dominant eigenvalue of A. And the

sparse matrix A is defined by

Aij =

{

1

Cj
, if page j has a link to page i

0, otherwise
(1)

where Cj is the number of out linkage from page

j. Usually, A is a very sparse matrix. In Practice,

we always mix a escape vector E to represent the

possibility of the web surfer jumping randomly to

another page, not following the link. In computation,

the introduction of E increases numerical stability.

In our implementation, we use Ei = 1. Hence, the

PageRank problem is to solve

R = c′
[

qA + (1− q)ET × 1
]

R (2)

where q is the possibility of the surfer following the

link. q = 0.85 is usually used in practice. c′ is the

dominant eigenvalue of A′ = qA + (1− q)ET × 1.

A. The power method

A popular method to compute PageRank is the

power method, described in Algorithm 1. In this algo-

rithm, ǫ is a stopping threshold value. We can see that,

the majority of the computation in PageRank is sparse

matrix-vector multiplication Y = ARk. In our experi-

ments, 92%−95% running time is dedicated to SpMV

computation. In practice, Nrow can be very large, so

it is desired that an efficient PageRank implementation

has a scalable and fast SpMV subroutine.

Algorithm 1: Power method of PageRank

Initialize R randomly to be R0, and let k = 0
repeat

Compute Y = qARk

d = ||Rk||1 − ||Y ||1
Rk+1 = Y + dE
k ← k + 1

until ||Rk+1 − Rk||1 < ǫ

B. The CSR Format[9]

The CSR format is a compact data structure of

sparse matrix. The Space requirement of the CSR

format scales linearly with the number of non-zero

values in the matrix. In the CSR format, Nnz non-zero

values in the sparse matrix A are stored in a row-major

vector Av, and another vector Aj records the column

position of each non-zero value in Av. There is also

a vector Ap record the start and end position of each

row in Av. An example of the CSR format is given as

follows.

A =

2 3 0
0 1 0
1 0 0

Av = [2 3 1 1], Aj = [0 1 1 0], Ap = [0 2 3 4]

We shall implement our SpMV based on a modification

of this representation of sparse matrices.

C. Naive SpMV Implementation

Algorithm 2 is the pseudo code of a basic serial

algorithm of CSR format based SpMV, i.e. Y = AR.

The outer loop enumerates all rows by performing

a sparse vector - dense vector dot production. To

calculate the doc production, firstly the elements in

the vector R are gathered by the indices of the sparse

vector, then multiplied with the corresponding values

in the sparse vector, and finally accumulated to the

results.

Algorithm 2: Sequential SpMV

for i = 0 to Nrow − 1 do

rbegin ← Ap[i]
rend ← Ap[i + 1]
acc← 0
for c = rbegin to rend do

acc← acc + Av[c]R[Aj [c]]
end for

Y [i]← acc
end for

IV. AMD RV870 ARCHITECTURE

AMD has a general purpose programming platform

for its GPUs, named ATI Stream. In this section, we

briefly discuss the hardware functionality and program-

ming model of AMD RV870 GPUs, which belong to

the latest family of AMD GPUs. Please refer to [10]

for detailed information.

A. Hardware architecture

Figure 1 illustrates the hardware architecture of

RV870. The GPU’s main computation power comes

from 320 5-way VLIW processors, called thread pro-

cessors. Each thread processor contains 5 shader cores,

including 4 normal cores that can perform 32-bit inte-

ger or floating point arithmetic, and 1 transcendental

core that can do transcendental functions such as

trigonometric or exponential functions. Each thread

processor also has its private register file, with a size of

128-bit by 256 entries. Each general purpose register

(GPR) is a 4-element short vector, which is usually

named float4, int4, etc. Each element in a short

vector is staticly addressed using x, y, z or w.

The 320 thread processors are organized in 20

SIMD engines. Along with the 16 thread processors,

each SIMD engine also has a 32kB dedicated scratch

memory, called the local data share (LDS). The LDS

is organized as 32-bit by 256 entries by 32 banks. It

supports random access. However, the access must be

serialized when multiple threads try to access a same

bank. The LDS also supports several atomic integer

arithmetic.

All thread processors in a certain SIMD engine

perform instructions in lockstep. Different SIMD en-

gines can perform different instructions. In the pro-

grammer’s view, the width of SIMD engines is 64,

due to hardware switching of threads. This means

each 64 threads are bundled logically, and perform

instructions in lockstep. These bundles of threads are

called wavefronts.

SIMD engine

X Y Z WT

Register File

T
h
re

a
d
 P

ro
c
e
s
s
o
r

Figure 1. RV870 Architecture [10]

Each thread processor can access its GPRs, the LDS,

and the off-chip graphic memory, while the memory

latency differs quite a lot. The GPRs are the fastest,

which can be accessed at full speed of the processor

cores. Accessing the graphic memory, however, may

take as long as several hundreds of clocks. To cover

the huge latency, the hardware scheduler suspends the

current wavefront and switch to another data-ready

wavefront. Wavefront switching is applicable as long

as there are enough resources, such as free GPRs and

LDS space.

B. Programming model

The program run on GPU is called kernel. Normally,

we run thousands of threads on the GPU. In this case,

each thread is an instance of the kernel, which means

threads are running exactly the same program with its

unique ID.

There are two types of kernel, pixel shader (PS) and

compute shader (CS). The CS mode is usually used for

general purpose computing. In CS mode, threads are

organized in thread groups. Threads in a same group

are guaranteed to be run on a same SIMD engine, so

that they can exchange data via the LDS. Note that

the size of thread group is set by the programmer,

although limited by hardware resources, while the size

of wavefronts is determined by hardware. A thread

group can have several full wavefronts and a trailing

partial wavefront.

Unlike multi-threaded CPU programs, where each

thread runs different program and the total number

of threads usually do not exceed the number of CPU

cores, GPU program usually initiates tens of thousands

or even more threads, in order to keep all thread

processors busy. The number of threads usually ex-

ceeds the number of thread processors by orders of

magnitude. The power of a single thread on GPU is

much weaker than that of a CPU thread, however, it

is the massive parallel processing ability that makes

GPU powerful.

V. GPU ACCELERATION OF PAGERANK

Figure 2 shows the workflow of our PageRank

implementation. The target web linkage matrix is

first preprocessed by CPU, then transferred on to the

graphic memory. The power loop of PageRank con-

sists of an SpMV and several other vector operation,

including examination of the end condition. The power

loop finally outputs the PageRank vector.

As we have discussed, our experiments show that

SpMV takes more than 92% of running time. There-

fore, the focus of accelerating PageRank is accelerating

SpMV, with specific consideration of the web linkage

matrices. In this section, we discuss the characteristics

of typical web linkage matrices, then propose our im-

plementation and optimization of PageRank on AMD

GPUs.

A. Characteristics of Web Linkage Matrices

The width and height of a linkage matrix Nrow is

the total number of pages being ranked, which easily

reaches millions or billions. The number of pages on

the web is exploding all the time, the average number

of links in a page, however, is small and remains rela-

tively stable. Hence, the number of non-zero elements

Nnz in a web linkage matrix is proportional to Nrow.

Web

Matrix

Av, Aj, Ap

Preprocessing

Partitioning

(CPU)

Matrix

Av, Aj, A'p

via

PCI-Express

Power Loop (GPU)

SpMV

T
in

y

S
m

a
ll

N
o
rm

a
l

V
e
c
to

r O
p
s

PageRank

R

Figure 2. PageRank workflow

Table I shows the statistics of data sets we used

in our work. They are retrieved from [11]. In a web

linkage matrix A, A(i, j) > 0 if page j has links

to page i. Hence, the number of backlinks (incoming

links) of a page equals to size (i.e. the number of non-

zero elements) of the corresponding row. The statistics

show that from November 2005 to November 2006, the

number of pages on wikipedia nearly doubled, while

the average number of links on each page remains

around 12. The average number of links of pages in

the edu domain is even lower.

Figure 3 shows the cumulative distribution of row

sizes of two data sets. Both data sets have over 50%

of rows with less than 2 non-zero elements; and over

95% of rows have less than 64 non-zero elements.

However, there are quite a few rows that have very

big sizes. These characteristics will affect our SpMV

implementation.

B. SpMV Implementation

The basic SpMV routine described in Algorithm 2

can be directly ported to multi-threaded platforms by

mapping each dot production between a row and the

vector to a thread. We call this the one-thread-one-row

10
0

10
1

10
2

10
3

10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

of backlinks of pages
i.e. # of non−zero elements of rows

C
u
m

u
la

ti
v
e
 F

re
q
u
e
n
c
y

edu 2001
Wikipedia 200702

Figure 3. Cumulative distribution of row sizes

(1T1R) method. This method has a drawback when

processing matrices with highly uneven row sizes,

like web linkage matrices. The difference of sizes of

rows results in unbalanced workload among nearby

threads. On AMD GPUs, workload balance should be

considered on a scale of wavefront. Since the time

consumption for any wavefront is determined by the

slowest thread in it, those threads with less workload

finish early and have to ”wait” for other threads to

catch up.

To balance the workload in wavefronts, we further

parallelize the inner loop into Nwave threads, where

Nwave is the size of a wavefront (and equals to 64 in

our case). The pseudo code is presented in Algorithm

3. A wavefront-wide reduction is needed, using the

LDS memory. We call this the one-wavefront-one-row

(1W1R) method. This method is similar to a CUDA

SpMV implementation proposed in [12]. However, this

method do not work quite well with web matrices.

As shown in the previous discussion, most rows have

quite few non-zero elements compared to Nwave = 64,

which means a large number of threads are idle while

only a few busy ones are doing the actual work.

For example, when a wavefront is processing a row

with only one non-zero element, only the first thread

performs the actual work, while all other threads in the

wavefront have to join the reduction process.

To solve this problem, we can use a hybrid method.

The basic idea is to sort the sizes of rows in an

roughly ascendent order, so that we can use different

schemes to process different parts of the data set.

Before sorting, we need to generate and save some

additional metadata for each row: 1) the size of the

row i, denoted by A′

p[i].size, and 2) the original

index of the row, denoted by A′

p[i].index. Ap[i] is

now denoted by A′

p[i].begin. Both of the additional

fields are implicit in ordinary CSR row array Ap.

After adding additional metadata, we can reorder A′

p

depending on sizes of rows.

The preprocessing only changes the representation

of the original matrix by replacing the row index

Algorithm 3: Parallel SpMV : 1 row 1 wavefront

for each thread in parallel do

Obtain thread ID in group Tid and wavefront ID

Gid
rbegin ← Ap[Gid]
rend ← Ap[Gid + 1]
acc← 0
for c = rbegin + Tid to rend stride Nwave do

acc← acc + Av[c]R[Aj [c]]
end for

LDS[Tid]← acc
Parallel reduce using LDS, result in LDS[63]

if Tid is the last thread in group then

Y [Gid]← LDS[Tid]
end if

end for

array Ap in basic CSR into A′

p. Both Av and Aj

remain unchanged. The pre-processing is done on CPU

before loading the matrix to graphic memory, which

takes O(Nrow) time and is only executed once. The

preprocessing also expands the size of row array to 3

times. However, compared to the size of Av and Aj ,

both of which at O(Nnz) order, both Ap and A′

p’s

requirement is O(Nrow).
In practice, we classify the rows into three classes:

1) Tiny Problems: each row with no more than tr1

non-zero elements is processed by one thread, using

the direct mapping scheme (1T1R) we have discussed.

Due to the classification, successive rows now have

relatively little differences in size. Hence, there is not

big workload unbalance within a wavefront. 2) Small

Problems: each row with more than tr1 and no more

than tr2 non-zero elements is processed by quarter

wavefront, i.e. Nwave/4 = 16 threads. The 16T1R

algorithm is similar to Algorithm 3. Finally, 3) Normal

Problems: rows with more than tr2 non-zero elements

are processed with 1W1R method.

On AMD GPU, we choose tr1 = 6 and tr2 = 96.

These parameters ensure that 1) in both tiny and small

problems, the loop do not exceed 6 iterations, so that

the possible uneven workload do not lead to great

waste of computation power; 2) in normal problems,

all threads are doing useful work. In section VI, the

experiments show that these parameters can bring

the best performance improvements compared to pure

1T1R or 1W1R implementations.

C. Optimized GPU Kernels

Here we present the pseudo code of kernels for tiny,

Algorithm 4: Optimized Parallel SpMV: 1 row 1

thread

for each thread in parallel do

Obtain absolute thread ID aT id
rbegin ← Ap[aT id].begin
rend ← rbegin + Ap[aT id].size
acc← 0
for c = rbegin to rend do

acc← acc + Av[c]R[Aj [c]]
end for

Y [Ap[aT id].index]← acc
end for

Algorithm 5: Optimized Parallel SpMV: 1 row 16

threads (Group size=64)

for each thread in parallel do

Obtain absolute thread ID aT id and thread ID

in group Tid
row ← aT id >> 4 + Offsetsmall

rbegin ← Ap[row].begin
rend ← rbegin + Ap[row].size
acc← 0
for c = rbegin+(Tid & 0x03) to rend stride 16

do

acc← acc + Av[c]R[Aj [c]]
end for

LDS[Tid]← acc
Parallel reduce using LDS, result in LDS[15, 31,

47 and 63]

if Tid ∈ 15, 31, 47, 63 then

Y [Ap[row].index]← LDS[Tid]
end if

end for

small and normal problems in Algorithm 4, 5 and 6

respectively. Note that here Ap represents the modified

CSR row index array. The three kernels should be

run in the order of tiny-small-normal to perform one

SpMV. For small and normal problems, the kernel must

also know how many rows have already been processed

by preceding kernels, i.e. the Offset parameters.

VI. EXPERIMENTS AND ANALYSIS

We use 7 data sets retrieved from the University

of Florida sparse matrix collection[11], Kamvar group

and Gleich group. Data sets named su and su+ucb

are web linkage of Stanford wab and Stanford and

Berkeley web, respectively. There are four data sets

extracted from Wikipedia, and one is extracted from

Table I
STATISTICS OF THE DATA SETS.

Data set # of rows # of non-zeroes avg.# of non-zeroes per row CSR size (MB) After preproc. (MB)

su 281,903 2,312,497 8.20 18.7 20.9
su+ucb 683,446 7,583,376 11.10 60.5 65.7

wikipedia-20051105 1,634,989 19,753,078 12.08 156.9 169.4
wikipedia-20060925 2,983,494 37,269,096 12.49 295.7 318.5
wikipedia-20061104 3,148,440 39,383,235 12.50 312.5 336.5
wikipedia-20070206 3,566,907 45,030,389 12.62 357.2 384.4

edu-2001 9,845,725 57,156,537 5.81 473.6 548.7

Algorithm 6: Optimized Parallel SpMV: 1 row 64

threads (Group size=64)

for each thread in parallel do

Obtain thread ID in group Tid and group ID

Gid
row ← Gid + Offsetnormal

rbegin ← Ap[row].begin
rend ← rbegin + Ap[row].size
acc← 0
for c = rbegin + Tid to rend stride 64 do

acc← acc + Av[c]R[Aj [c]]
end for

LDS[Tid]← acc
Parallel reduce using LDS, result in the LDS[63]

if Tid = 63 then

Y [Ap[row].index]← LDS[Tid]
end if

end for

.edu domain. We summarized the statistics of these

data sets in Table I.

A. Experimental Setup

We perform experiments on the Radeon

5870(RV870) GPU at 850MHz. The counterpart

CPU is PhenomII 965 at 3.4GHz. We run PageRank

on the data sets to measure the detailed breakdown

of elapsed time. Specifically, we measure the

preprocessing time, the average time per round for

SpMV and vector operations.

The algorithms are implemented on both Cal/IL and

OpenCL. The OpenCL framework is a novel one that

can take advantage of the parallel processing power of

both CPUs and GPUs. It is a promising technology,

especially addressing the issues of programming het-

erogenous parallel systems. The logic of algorithms we

used in OpenCL implementation is exactly identical to

our CAL/IL implementation. We use ATI Stream SDK

v2.0.1 with OpenCL support.

B. Results on CAL/IL

The experiment result of PageRank with CAL/IL

acceleration is summarized in Table II. It shows the

average time for each round of computation on CPU

and GPU, the time devoted to SpMV, and the prepro-

cessing time. We can see that up to 12x speedup can

be obtained for 500 rounds, and the speedup depends

on the data set.

Figure 4 shows the SpMV performance comparison

in GFlops of 5 different methods. The 5 methods are

serial implementation on CPU, 1T1R, 16T1R, 1W1R

and our hybrid method on RV870. The total Flops

is estimated by 2Nnz − Nrow. Since the data sets of

wikipedia on 20060925, 20061104 and 20070206 have

similar dimensions, we only show the experimental

results of the largest data set of these three in the chart.

From the chart we can see that our method outperforms

other three GPU implementation. Besides, 16T1R is

more suitable for web matrices SpMV.

0.2

0.6

1.4

0.7

2.1

0.1

0.7

1.4

0.7

2

0.6

1.1
1.3

0.4

3.6

Figure 4. SpMV performance comparison, in GFlops. From left to
right: CPU, 1T1R, 16T1R, 1W1R, our hybrid method

C. Results on OpenCL

There are a few constraints related to memory al-

location and control in current OpenCL support. Cur-

rently, the memory space that can be used is relatively

small compared to CAL/IL on the same graphic card.

And the maximum size of a single buffer is no more

Table II
PERFORMANCE OF PAGERANK (TIME IN MS)

Data set
CPU GPU

speedup for 500 rounds
time/round preprocessing SpMV/round overall/round

su 16.67 11.51 2.74 2.81 5.9
su+ucb 25.54 31.00 4.74 5.18 4.9

wikipedia-20051105 234.31 72.65 18.08 18.66 12.5
wikipedia-20060925 541.85 154.01 35.98 37.25 14.4
wikipedia-20061104 558.11 146.35 38.13 39.42 14.1
wikipedia-20070206 701.54 156.22 43.91 45.44 15.3

edu-2001 289.92 467.92 28.99 32.31 8.7

than a quarter of the total graphic memory. Meanwhile,

remote memory is not supported.

Due to these constraints, our OpenCL implementa-

tion of SpMV and PageRank can only work on rela-

tively small datasets. Hence, we do not perform SpMV

experiments using all the data sets discussed above.

We also compared the performance of OpenCL and

CAL/IL implementation of vector addition, L1 norm

and L1 distance calculation, which are also elements of

PageRank algorithm. Although these vector operations

are not the bottleneck of PageRank calculation, in term

of comparison between OpenCL and IL, we think the

experiments are relevant.

Table III
PERFORMANCE COMPARISON BETWEEN CAL/IL AND OPENCL

Operation
Performance (GFlops)

IL/OCL ratio
CPU IL OCL

Vec-addition-1M 0.405 6.329 2.577 2.46x
Vec-addition-10M 0.408 9.852 6.329 1.56x

Vec-norm-1M 0.165 9.259 1.368 6.77x
Vec-norm-10M 0.165 26.455 6.734 3.93x

Vec-dist-1M 0.317 10.870 2.356 4.61x
Vec-dist-10M 0.320 29.283 9.556 3.06x

SpMV-wp-20051105 0.173 2.095 1.898 1.10x
SpMV-wp-20060925 0.138 1.989 1.893 1.05x
SpMV-wp-20061104 0.137 1.983 1.890 1.05x

The experiments are also done with a Radeon 5870

(RV870) card and a PhenomII 965 CPU. The results

are reported in Table III.

The experimental results suggest that OpenCL GPU

implementation is generally a few times slower than

CAL/IL implementation. This is comprehensible since

OpenCL is a high-level language which actually gen-

erates the lower-level IL code eventually for execution.

Moreover, the performance gap between OpenCL and

IL is varied for different algorithms. The gap for

SpMV is the smallest that the performance of OpenCL

implementation is quite satisfactory. The gap for vector

norm is the largest, which is generally unacceptable.

Taking into account the computation density of

these algorithms, which is defined as the ratio of

global memory access to ALU operations, we find

that algorithms with higher computation density tend

to have poorer performance in OpenCL, compared

with IL. For example, vector norm calculation has the

highest computation density in our tested algorithms.

It requires coalesced read of the vector only slightly

more than once, since most of the reduction is done in

the LDS memory. Vector distance calculation has twice

read compared to norm calculation. Vector addition

has almost the same global memory access to distance

calculation, however, it has much less ALU operations.

Finally, SpMV needs random (i.e. not coalesced) read

from the vector, which is a main bottleneck of the

GPU implementation. So the computation density is

the lowest among our tested algorithms.

Computation intensive algorithms tend to perform

poorer in OpenCL, compared with IL. This is because

the ALU instructions generated by OpenCL compiler

is not quite optimized. The time of memory access can

cover the drawback if the algorithm is data intensive.

After all, the results suggest that there is a big gap

between the performance of OpenCL and IL which

developers have to fight to attenuate.

D. Scaling to Larger Data Sets

The data sets we used in our experiments are large

but still able to fit in the graphic memory. In some

real applications, however, the data sets may be much

larger, for example, the web linkage data of the whole

www. Our method can easily scale to larger data sets.

A frequently used technique for GPU application

is streaming, i.e. pipelining data uploading, kernel

execution and data downloading, so that they run

concurrently. The prerequisite for this method is that

the data throughput of kernel does not exceed the

bandwidth of data uploading and downloading, so

that kernel execution time covers data transfer time.

However, a quick math shows this is not the case for

PageRank.

From table II and table I we can see that the kernel

throughput exceeds 384.4MB/45.44ms = 8.46GB/s

for wikipedia-20070206 and 548.7MB/32.31ms =
16.98GB/s for edu. The PCI-Express x16 bandwidth

is 5GB/s for uploading, however, a long way from

satisfying the kernels’ appetite. Hence, the kernel exe-

cution time can not cover the data transfer time unless

some kind of intensive data compression is applied.

To scale to larger data set, we can add more graphic

card to the system, or add more computer node to form

a cluster. We can horizontally split a web matrix into

several tiles. Then, transfer each tile to a computation

chip’s local memory. The current vector is broadcasted

to all nodes, and multiplies each tile either on CPU

or on GPU. The preprocessing only takes place on

GPU tiles, and different tiles can be preprocessed

independently.

The requirement for this method is that the vector

can be wholly stored on all computation chips’ local

memory. For a system using graphic cards with 1GB

RAM, we can process data sets with up to 100M

pages. If this is not the case, we can further divide

each tile of matrix vertically. The matrix need to be

properly divided to maintain workload balance of all

nodes. Awareness of heterogeneity may also be needed.

However, from the view of a single node, the problem

go back to SpMV and vector operation, where our

method can be utilized.

VII. CONCLUSION

In this paper, we accelerate the PageRank computa-

tion on AMD GPUs using the intermediate language

and OpenCL. As a primitive, we implement a sparse

matrix-vector multiplication routine. We carefully clas-

sify the problem into three sub-classes and design

efficient kernels. In the experiments, up to 15x speedup

is obtained. The major bottleneck of our current imple-

mentation is the gathering operation in SpMV, which

requires random accesses to the device memory, hence

the cache hit rate is generally low. In the future, we

shall find methods to increase the cache hit rate, which

further increases the overall performance.

We also compare the performance of AMD OpenCL

platform based implementation with that of low-level

IL based implementation, using the same algorithm

and method. The results show that currently OpenCL

to IL compiler is not quite optimized. Data intensive

algorithms may perform more satisfactorily than com-

putation intensive algorithms on AMD OpenCL.

The scalability to larger datasets is also analyzed

in our work. Based on the comparison of kernel

throughput and PCIe bandwidth, we find that the kernel

execution time can not effectively cover that of the

data transfer, if the data can not stay in the graphic

memory. Hence, we suggest to add more graphic cards

or computer nodes for scaling to larger problems.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
pagerank citation ranking: Bringing order to the web,”
1999.

[2] Y. Zhu, S. Ye, and X. Li, “Distributed pagerank com-
putation based on iterative aggregation-disaggregation
methods,” in CIKM ’05: Proceedings of the 14th ACM
international conference on Information and knowledge
management. New York, NY, USA: ACM, 2005, pp.
578–585.

[3] J. R. Wicks and A. Greenwald, “More efficient parallel
computation of pagerank,” in SIGIR ’07: Proceedings
of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval.
New York, NY, USA: ACM, 2007, pp. 861–862.

[4] Y. Wang and D. J. DeWitt, “Computing pagerank in
a distributed internet search system,” in VLDB ’04:
Proceedings of the Thirtieth international conference
on Very large data bases. VLDB Endowment, 2004,
pp. 420–431.

[5] M. Garland, “Sparse matrix computations on manycore
gpu’s,” in DAC ’08: Proceedings of the 45th annual
Design Automation Conference. New York, NY, USA:
ACM, 2008, pp. 2–6.

[6] M. Baskaran and R. Bordawekar, “Optimizing sparse
matrix-vector multiplication on gpus using compile-
time and run-time strategies,” IBM Technical Report,
Tech. Rep., 2008.

[7] N. Bell and M. Garland, “Efficient sparse matrix-vector
multiplication on cuda,” NVIDIA Technical Report
NVR-2008-004, Tech. Rep., 2008.

[8] D. R. Kincaid, T. C. O. Oppe, and D. M. Young,
ITPACKV 2D User’s Guide, Report CNA-232, The
University of Texas at Austin, May 1989.

[9] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and
H. van der Vorst, Templates for the Solution of Alge-
braic Eigenvalue Problems: a Practical Guide. SIAM
Publication, 2000, ch. Common Issues: Sparse Matrix
Storage Formats, pp. 403–404.

[10] ATI Stream Computing Programming Guide - Compute
Abstraction Layer (CAL), Advanced Micro Devices,
Inc., Mar 2010.

[11] T. Davis, “University of florida sparse matrix collec-
tion,” http://www.cise.ufl.edu/research/sparse/matrices.

[12] M. G. Nathan Bell, “Efficient sparse matrix-vector
multiplication on cuda,” NVIDIA, Tech. Rep., Dec
2008.

