DCCB and SCC Based Fast Circuit Partition
Algorithm For Parallel SPICE Simulation

Xiaowei Zhou, Yu Wang * , Huazhong Yang

Abstract —With the rapid scale growing of VLSI circuits,
simulation speed and efficiency of CAD tool SPICE have
turned out to be a bottleneck. Real VLSI circuit design
simulation becomes unbearably time-consuming and urgent is
the need to increase its efficiency. The emergence and thriving
of multi-core systems in recent years offer a promising
solution strategy to this problem. Circuit partition is required
to these strategies, but traditional partition algorithms
encounter difficulties when facing VLSI circuits for parallel
simulation. This paper presents an efficient circuit partition
algorithm specially designed for VLSI circuit partition and
parallel simulation. The algorithm is established on
recognizing DCCB and SCC. Our algorithm shows preferable
solution quality and speedup for real experimental circuit
designs compared with traditional ones.’

Index Terms —Parallel, circuit partition, DCCB, SCC,
overweight circle

I. INTRODUCTION

The growing VLSI circuit size and increasing structure
complexity make the transistor level circuit simulation more
and more like a mission impossible. In most transient analysis
in SPICE tools, simulation of some moderate scale circuit
designs takes days to accomplish. Low simulation efficiency
becomes a critical bottleneck for modern CAD tools.

The rapid development of multi-core and many-core
systems in recent years provides a promising way to solve this
problem through parallel simulation. Synopsis HSPICE has
already released its dual core parallel version, which for some
simulation tasks can improve the efficiency by 70%.

A prerequisite step for parallel simulation is circuit partition.

Partition problem is a classical problem in CAD research and
has wide range of applications. Algorithms to solve this NPC
problem are well developed in recent years[1]. But most
traditional methods may encounter difficulties in two aspects
when facing VLSI partition problems for multi-core parallel
simulation.

For the direct algorithms[2],[3],[4]-[11], overwhelming
computing time corresponding to enormous problem size may

This work was supported by National Natural Science Foundation of
China(No0.60870001, N0.90207002) and TNList Cross-discipline Foundation.

Xiaowei Zhou was in NICS group, EE. Department, Tsinghua University,
Beijing, China. (e-mail: zhouxw3700@hotmail.com).

Yu Wang, the corresponding author, is assistant researcher in NICS group,
EE. Department, Tsinghua University, Beijing, China. (e-mail:yu-
wang@mail.tsinghua.edu.cn)

Huazhong Yang is professor in NICS group, EE. Department, Tsinghua
University, Beijing, China. (e-mail:yanghz@tsinghua.edu.cn).

978-1-4244-3870-9/09/$25.00 ©2009 IEEE

be the main problem. If taking too much time on partition
process, the whole simulation efficiency is very likely to be
hampered, no matter how fast the parallel simulation is
accomplished. For algorithms with pre-assemble steps[12]-
[19], such as clustering methods, the pretreatment processes
are often based on certain mathematical search criteria,
rendering the solution quality of whole algorithm varies with
circuit structure, cluster size and clustering strategies. Their
scalability and stability are not well expected.

In this paper we introduce a new circuit partition algorithm
specially designed for VLSI partition and multi-core parallel
simulation, called DCCB (Direct Current Connected Blocks)
and SCC (Strong Connected Components) based partition. The
proposed algorithm shows considerable improvements in
efficiency. We run our algorithm on some typical circuit
designs and experimental results show that the algorithm gives
satisfying computing time speedups and quality improvements.

The following of this paper is organized as below: Section II
describes algorithm framework. Section III presents
terminologies for recognizing DCCBs. Section IV gives out
the analysis and strategies for recognizing SCCs and the
overweight circle. Section V presents experimental results.
Section VI concludes our work with some expectations and
plans for future research.

II. CIRCUIT PARTITION FRAMEWORK

To implement the proposed algorithm we establish a
software framework carrying out the process the algorithm
describes. Fig.1 gives out the basic flow chart of the whole
process.

Get G, from input netlist

v

Recognize DCCBs

v

Form digraph G,

v

Recognize SCCs

v

Neglect max circle

v
Form DAG G

v

Multiple k-way F-M

v

Partition Results

scc

Fig. 1: Flow Chart of DCCB/SCC based partition

1247

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:09:15 UTC from IEEE Xplore. Restrictions apply.

In our partition algorithm, we first read the input netlist.
With that we form the original graph G, representing the
circuit. Then we pre-partition Goto a digraph Gpccpillustrated
in section III in details. After that we transform this digraph
Gpecp to a DAG Gy by recognizing SCC and the overweight
circles. This step is seen in subsection A, B of section IV. At
last we apply a classical multiple k-way partition to this DAG
Gscc to get a final result[11].

The advantage of the proposed algorithm can be explained
in these following aspects:

1) The search space for optimization is greatly reduced thus
the partition time may shrink by orders. This ensures the
high simulation efficiency of our algorithm.

2) Most VLSI designs have quite clear functional structure and
signal flows. Different DCCBs are often unconnected or
simply coupled. Low communication cost is expected
among DCCBs. On the other hand, duplication and
redundancy commonly used in VLSI designs make the load
balance requirement easy to be met. These two helpful
characters ensure the good final solution quality our method
reach.

3) Since DCCBs are commonly seen as basic functional
blocks in VLSI circuits, our method is robust to most of
application cases. Additionally, the recognition process is
simple and determinable, few parameters would fluctuate
solution quality.

III. DCCBS AND DIRECTED CYCLIC GRAPH

A. DCCB Recognition

The input netlist of circuit design can be viewed as an
original graph Go(V,E). Typically, G, of a VLSI circuit may
include tens of thousands of elements. In order to reduce
problem size and speed up partition, we put MOSFETs and
related passive device networks with direct current passage
together to form DCCB (Direct Current Connected Blocks).
This pretreatment method is for the first time introduced in
VLSI circuit partition algorithms for adapting parallel
simulation task. To better illustrate the ideas of DCCB, we
first give out some definitions and classifications in Table I:

TABLE I
NODE ASSEMBLY DEFINITION FOR DCCB RECOGNITION
Assembly Definition Description
N Node assembly All the MOSFET D-
nodes & S-nodes
Ny Input node assembly All nodes connected to
outer input
Np Power node assembly All nodes connected to
VDD or GND
Ny Inner node assembly All other nodes in N
than N; or Np

And DCCB can be defined as follows:

Theorem 3.1: A MOSFET i is recognized as component of
DCCB j, iff either its D-node Ny or S-node N; is directly
connected (or via RLC networks) to at least one MOSFET’s
D-node or S-node in DCCB j, while at least one of the
connection passages does not include Np nodes.

1248

Fig. 2 gives an example of DCCBs. All the 10 MOSFETs
enclosed in the black dashed line form DCCBI1, and the rest
two outside the enclosure form DCCB2. Fig. 3 gives out the
pseudo code of DCCB recognition.

DCCB2 ¢ T==="="

T

DCCB1

Fig. 2 Classifying DCCBs

Void DCCB_Rec(Graph G)
s

¢
for each MOSFET i in input netlist
if i is unidentified
{

Recognize i as component of new DCCB j;
Adj _Rec(Graph G,,, i,])
mark i as identified;

}

Void Adj Rec(GraphG,,, i,j)
s

¢
for each DS adjacent MOSFET (or adjacent PASSIVE) k to i
if k is unidentified
/
¢
Recognize k as component of DCCB j;
Adj _Rec(Graph G, k, j)

}

}

Fig. 3: pseudo code of DCCB recognition

With proper data structure, this recognition process has
linear time complexity. After recognizing DCCBs, we need to
further identify the sequence of them to correctly represent the
signal flow in the circuit. Few more corresponding definitions
are given in Table II:

TABLE I
NODE ASSEMBLY DEFINITION FOR SCC RECOGNITION
Assembly Definition Description
No Inner output node All D-nodes and
assembly S-nodes in DCCBs
Ny Inner input node All G-nodes
assembly in DCCBs

And DCCB sequence is identified as follows:

Theorem 3.2: A DCCB i is recognized as “pointing” at a
DCCB J, iff at least one of its Ny nodes is directly connected
(or via RLC networks) to at least one of the N, nodes in
DCCB}j.

By recognizing DCCBs and identifying their sequence
relationship, we transform the original input circuit graph Go
to a new directed cyclic DCCB graph Gpccp. Fig. 4 gives an
example of a Gpccp. Root is an artificial node pointing to
DCCBs not pointed at by any other DCCBs.

B. Theoretical analysis for algorithm speedup

In this subsection we try to give out some approximate
estimation of the expected improvement of DCCB based

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:09:15 UTC from IEEE Xplore. Restrictions apply.

pretreatment.

DCCB2

‘ B e

DCCB4 \ DCCB5
/\ DCCB7 \\
DCCB8

DCCBG/v
For generality we assume the average time complexity of

Fig. 4: Example of Gpcca
this algorithm to be O(N?). And we further assume each
DCCB contains 8 elements on average after pre-partition.
The computing time cost 7, of this classical algorithm without
our DCCB recognition is:
T, =keO(N®), where k is a constant)
And when problem size shrinks to N/ B , the T,/
representing time cost after DCCB recognition is:

DCCB1 DCCB3

T, =ke O((N/B)*)=ke O(N®)/ B @
Let the average efficiency speedup to be y , we get:
y=T/T, 3)

In the estimation above we neglected the DCCB recognition
time itself which has linear time complexity.Take O(N@) to be

NigN as an example. Based on real VLSI scale, we further
assume N to be 10* and B to be 10. We get 7, from (1) and
T, from (2):

T, =keNelgN =4kel10",

T, =ke(N/B)elgN/p)=3ke10°,

Still neglect the recognition time cost:

y=T,/T, =16.67.

We see there is more than an order speedup theoretically
expected for applying DCCB recognition method.

IV. RECOGNIZING SCC AND OVERWEIGHT CIRCLES

A. Recognizing SCC

The DCCB based graph Gpccp is much more simplified than
the original graph Gp, but still not suitable for applying
partition algorithm, because it may contain circles, and
assigning elements in one circle to more than two parts
increases the communication cost. Due to this consideration,
circle elements are better to be assigned in one partition. Thus
we further cluster circling DCCBs to SCCs (Strongly
Connected Components). SCC is recognized as follows:

Theorem 4.1: A DCCB i is recognized as component of
SCC j, iff DCCB i can reach any other DCCBs in SCC j

through a certain series of directed arcs.

By forming SCCs we transform the graph Gpccpto a new
DAG Ggcc. Fig. 5 gives the SCC recognition result of the
example in Fig. 4. SCCs are basic elements for partitioning in
Ggcc and traditional k-way partition methods are used. Fig. 6
gives pseudo codes of SCC recognition.

DCCB1 DCCB3

~ -

Void SCC Detect(Graph G node i)

DCCB
Set level of node i;

Set min_level of node i=level of node i;

for each adjacent node j that i is pointing to

ifj is unvisited
SCC Detect(Graph G
else
if (min_level of node j<min_level of node i)
set min_level of node i to min_level of node j;

node j)

bcep

Jor each node i in G,
Set k = min_level of node i;
node i is recognized as component of SCC k;
}
/

Fig. 6: pseudo codes of SCC recognition

B. Recognizing overweight circles

For some VLSI designs, there may be long feedbacks
covering a wide range of stages and a large percent of the
nodes in circuits. If they are put together by SCC recognition
process, successive partition process may have difficulty to
reach satisfying load balance. We call this kind of SCC
“overweight circle”. In our algorithm, overweight circles are
not recognized as SCCs and are available for partition. This
strategy is adopted with the following steps: first we recognize
all SCCs, then for those SCCs larger than preset threshold size,
we find an inner key node and cut off at least one adjacent
node pointing to it in the SCC. We further recognize smaller
circles in the original SCC. Fig. 7 gives the pseudo codes of
this recognition process:

E’oid OVC_Detect(Graph G ;)

t
for each SCC i larger that threshold number
select the key node k;
cut one arc that is pointing to k in SCC i;
get subgraph G, from Graph G
SCC Detect(Graph (C;,‘)
OVC Detect(Graph G)

DCCB

1249

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:09:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: pseudo codes of recognizing overweight circle

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this paragraph we give out primary experimental results
of our algorithm performance. We use traditional k-way F-M
partition algorithm[11] as a comparison. Due to convenience
of program testing and debugging, several typical mini-circuits
are chosen as testbenches in the first step. All the experiments
are done on an Intel 2.66GHz PC with 512M memory, on the
platform of VC++6.0.

Circuit C1 is a 2-bit calculator in digital circuits. It contains
32 MOSFETs and 3 capacitors. Circuit C2 is a typical charge
pump block in PLL, containing 90 MOSFETs and 6 passive
devices. Algorithm performances are listed below in Table III.
N is the problem size. The “k-way” row lists the performances
given under a k-way partition task. As for C1 there are not
enough DCCBs for 8-way partition and not enough SCCs for
more than 4-way partition, performances are unavailable in
corresponding rows.

TABLE 11
ALGORITHM PERFORMANCE FOR C1(N=35) AND C2(N=96).
lgorithms Traditional Based on Based on
F-M Gnccn Gscc
Performan C1 C2 Cl1 C2 C1 C2
Cut 2 way 4 2 4 2 4 2
Cost | 4 way 11 10 8 7 - 7
(min) | 8way | 19 23 - 16 - 16
Balan | 2way | 09 | 0.72 | 0.98 | 04 | 098 | 0.98
(min | 4way | 0.63 | 0.53 | 0.14 | 0.12 - 0.12
/max) | 8way | 0.4 | 0.37 - 0.11 - 0.11
CPU | 2 way 67 80 37 45 32 49
Time | 4 way 83 104 54 64 - 59
(ms) | 8way | 107 | 127 - 80 - 77

From Table 3 we can see that:

1) Solution quality of our DCCB/SCC based algorithm
appears better or not worse than direct F-M algorithm. This
exceeds our theoretical expectation. Reason for it may lies
in the fact that k-way F-M is very sensitive to initial
solution, and our algorithm are not likely to begin with bad
initial solutions.

2) The load balance of the proposed algorithm appears awful
in both test circuits. It is not because of the disadvantages
our algorithm has born with. It is due to lack of duplication
and similar blocks in the two test circuits. In much larger
real circuit design containing over 10° device elements,
duplications and redundancies are commonly seen. We then
have reason to believe that load balance requirements may
be quite easily achieved in those cases.

3) Speedups are observed in all comparable cases. Notice that
the speedup rate doesn’t reach theoretical expectation. This
is because the neglected processes of DCCB/SCC
recognition still account for a certain percent of CPU time.
This percentage is likely to decrease when scale N grows,
as the two steps have lower time complexity compared to
partition algorithm. Speedup for partitioning real VLSI
circuits is expected to approach the theoretical expectation.

1250

This estimation can be to some extent approved by the
speedup increase observed in C2 which is larger in problem
size.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a DCCB/SCC based fast circuit
partition algorithm. The DCCB/SCC recognition is simple and
determinable with good stability and scalability, and the whole
algorithm is hopefully suitable for VLSI parallel simulation.
We run our algorithm process on some mini-circuits in real
designs as first step experiment and results achieved are quite
preferable. Future works may contain these following aspects:
1) Fulfill experiment results of real circuits with over 10 sizes.
2) Develop algorithms that properly assign every partition to a

certain multi-core network with given topology restrict, in

order to keep partition communication as low as possible.

REFERENCES

[1] Jason Cong, Wilburt Juan Labio, and Narayanan Shivakumar,
“Multiway VLSI circuit partition based on dual net representation”, in
IEEE Trans on CAD, Vol. 15, No. 14, April 1996.

[2] B. Kernghan and S. Lin, “An efficient heuristic procedure for
partitioning of electrical circuits,” Bell Syst. Tech. J., vol. 49, pp. 291-
307, 1970.

[3] C. Fiduccia and R. Mattheyses, “A linear time heuristic for improving
network partitions,” in Proc. ACM/IEEE DAC, 1982, pp. 175-181.

[4] Yi Zou, Zhenquan Zhuang, Huanhuan Chen, “HW-SW partitioning
based on genetic algorithm”, in CEC, Volume 1, 19-23, June 2004,
Page 628 — 633.

[S] G.F. Nan, M.Q. Li, J.S. Kou, “Two novel encoding strategies based
genetic algorithms for circuit partitioning”, in Proc. of ICMLC, Aug.
2004.

[6] B.Riess, K.Doll, and F.M.Johannes, “Partitioning Very Large Circuits
Using Analytical Placement Techniques”,in 31 ACM/IEEE DAC, 1994.

[71 Yen-Chuen Wei, Chung-Kuan Cheng, “Ratio Cut Partitioning for
Hierarchical Designs”, IEEE Transactions on CAD, Vol.10, 1991.

[8] Yang and D.F.Wong, “Efficient network flow based min-cut balanced
partitioning,” in Proc. IEEE Int. Conf. CAD, Nov. 1994, pp. 50-55.

[9] W.K. Mak, “Min-cut partitioning with functional replication for
technology-mapped circuits using minimum area overhead”, in IEEE
Trans. On CAD, Volume 21, April 2002, Page 491 — 497.

[10] Dutt S., W.Y. Deng, “Probability-based approaches to VLSI circuit
partitioning”, in IEEE Trans. On CAD, Volume 19 , May 2000, Page
534 - 549.

[11] L. Sanchis, “Multiple-way network partitioning”, IEEE Trans. On
Comput., vol. 38, pp. 62-81, 1989.

[12] Liao Qin, Li Xiwen, “The effective clustering partition algorithm based
on genetic evolution”, in Journals of Donghua University, vol. 23, 2006.

[13] P. Chan, M. Schlag, and J. Zien, “Spectral K-way ratio-cut partitioning
and clustering,” in Proc. 30th ACM/IEEE DAC, 1993, pp. 749-754.

[14] Blaschko M.B., Lampert C.H, “Correlational spectral clustering”, in
IEEE Conf. On CVPR, 23-28, June 2008, Page 1-8.

[15] Kan Li, Y.S.Liu, “A Spectral Clustering Algorithm Based on Self-
Adaption”, in ICMLC, Vol. 7, 19-22 Aug. 2007, Page3965-3968.

[16] V.Kolar, N.B.Abu-Ghazaleh, “A multi-commodity flow approach for
globally aware routing in multi-hop networks”, in ICPCC 2006, pp.
313-317.

[17] S.Bethi, V..Phoha, Y.Reddy, “Clique clustering approach to detect
denial-of-service attacks”, in Proc.of 5th Annual IEEE SMC 2004, Page
447-448.

[18] C.J.Alpert and A.B.Kahng, “Geometric embedding for faster (and better)
multi-way netlist partitioning,” in Proc. 30th ACM/IEEE DAC, June
1993, pp. 743-748.

[19] S.L. Zhang, C.Q. Shi, Z.Y. Zhang, Z.Z. Shi, “A Global Geometric
Approach for Image Clustering”, in 18th ICPR, 2006, Vol. 4.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:09:15 UTC from IEEE Xplore. Restrictions apply.

