
FPGA and GPU Implementation of Large Scale

SpMV
Yi SHAN

1
, Tianji WU

1
, Yu WANG

1
, Bo WANG

1
, Zilong WANG

1
, Ningyi XU

2
, Huazhong YANG

1

1
Tsinghua National Laboratory for Information Science and Technology

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2
Hardware Computing Group, Microsoft Research Asia

1
{shany08,wutj06,wangb06}@mails.tsinghua.edu.cn, {yu-wang, yanghz}@tsinghua.edu.cn

2
xu.ningyi@microsoft.com

Abstract Sparse matrix-vector multiplication (SpMV) is a

fundamental operation for many applications. Many studies have

been done to implement the SpMV on different platforms, while

few work focused on the very large scale datasets with millions of

dimensions. This paper addresses the challenges of implementing

large scale SpMV with FPGA and GPU in the application of web

link graph analysis. In the FPGA implementation, we designed

the task partition and memory hierarchy according to the

analysis of datasets scale and their access pattern. In the GPU

implementation, we designed a fast and scalable SpMV routine

with three passes, using a modified Compressed Sparse Row

format. Results show that FPGA and GPU implementation

achieves about 29x and 30x speedup on a StratixII EP2S180

FPGA and Radeon 5870 Graphic Card respectively compared

with a Phenom 9550 CPU.

Keywords-component; SpMV; FPGA; AMD GPU; memory

hierachy

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is an
important subroutine in numerical linear algebra. The sparse
matrix means a large matrix mostly composed of zero entities.
As the data scales, it brings many challenges to the storage and
computation of the SpMV for large scale applications. For
example, the current Internet has hundreds of billions of web
pages, the ranking of which becomes a valuable and
challenging problem. The most widely used method is the
PageRank [1], which iteratively perform sparse matrix-vector
multiplication (SpMV) over all the web pages linkages. A
high performance, cost-effective SpMV computation solution
will benefit a lot of applications in research and commercial
computing.

As the physical constraints are preventing frequency
scaling of CPUs and power consumption is becoming a critical
problem recent years, the parallel computing becomes the
dominant paradigm for large scale computing applications.
There are already many studies which use the parallel
computing platforms to accelerate the SpMV algorithm, such
as the multi-cores [14], clusters, GPUs [6-8] and FPGAs [4, 5].
In the multi-cores and clusters implementation, the
programming is easy and flexible, because designers do not
need to care about the memory access and computation
sequence. However, the multi-threads memory access will
cause many performance penalties and the power consumption
is still a crucial problem for the CPU based platforms.

As one of the alternative computing platforms, FPGAs has
been widely explored in various high performance computing
applications in recent years [2], because i) FPGA is
reconfigurable and easy to change functionalities without
changing the platform; ii) logic elements in FPGA work in a
naturally fine-grained parallel way with high flexibility; and iii)
FPGA is one of the best hardware devices that can follow the
Moore's Law persistently [3]. Although FPGA researchers
have implemented SpMV through many methods [4, 5], the
matrix they used is either too small or not so sparse. In that
scenario, the vectors random accessing problem can be solved
by storing them on-chip and the processor scheduling cost
between tasks is really small. In the FPGA implementation of
this paper, we analyzed different scale of datasets, and then
proposed different memory hierarchies for them. For the
computation, we design a stack based accumulator which can
support the continuous data stream processing and a static
processor scheduling scheme to cover the scheduling cost.

Another important computing platform, the graphic
processing units (GPUs) have become popular during recent
years. GPUs are massively parallel devices with high
computation performance and high power efficiency. Many
previous studies focused on accelerating SpMV with GPU [6, 7,
8]. However, general purpose SpMV routines do not perform
well for large scale matrix operations used in PageRank
application. In the GPU implementation of this paper, we
analyzed the characteristic of the sparse matrices used in
PageRank, and introduced a fast SpMV using a modified
Compressed Sparse Row (CSR) format. The linkage matrices
used in PageRank are always very sparse, with highly uneven
row sizes (number of non-zero values in a row). Our SpMV
subroutine is highly optimized for the AMD GPU architecture
using AMD Compute Abstraction Layer (CAL) and
Intermediate Language (IL).

In this paper, we use both FPGA and AMD GPU to
implement the SpMV algorithm for the web linkage datasets.
The purpose is to provide efficient computation solutions in
these two widely available acceleration platforms. For each
platform, the optimized methods are analyzed according to the
hardware architecture. Processing parallelism, processor
scheduling, and memory hierarchy are discussed for both
FPGA and GPU implementations. The main contributions of
this paper are:

64978-1-4244-7954-2/10/$26.00 c©2010 IEEE

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 27,2010 at 07:23:33 UTC from IEEE Xplore. Restrictions apply.

1. A reasonable mapping SpMV to platform according to
the architecture and the feature;

2. Specifying several types of task partition and memory
hierarchy methods on FPGA design according to
different scales of dataset;

3. Giving an optimized design method on AMD GPU
based on the analysis of web linkage matrices, and
discussing the scalability of the GPU implementation.

The remainder of this paper is organized as follows. Section
2 gives some background knowledge and a review on related
works. Section 3 introduces the FPGA implementation of
SpMV. Section 4 gives a brief introduction to the AMD RV870
GPU. The optimized GPU implementation of SpMV is
discussed in Section 5. The experimental results are presented
and analyzed in Section 6. Section 7 concludes this work.

II. BACKGROUND KNOWLEDGE AND RELATED WORKS

In this part, the SpMV algorithm and a typical
representation method of the sparse matrix (CSR) will be
introduced. Then the implementations of SpMV algorithm will
be surveyed and their feature will be analyzed.

A. The CSR Format

In order to analyze the SpMV algorithm, the CSR format
will be introduced firstly for the very sparse matrix
representation. The Space requirement of the CSR format
scales linearly with the number of non-zero values in the
matrix. In the CSR format, Nnz non-zero values in the sparse
matrix A are stored in a row-major vector Av, and another
vector Aj records the column position of each non-zero value in
Av. There is also a vector Ap which records the start and end
position of each row in Av. An example of the CSR format is
given as follows.

A = 2 3 0

0 1 0

1 0 0

Av = [2 3 1 1]; Aj = [0 1 1 0]; Ap = [0 2 3 4]
We shall implement our SpMV based on a modification of

this representation of sparse matrices.

B. SpMV

Algorithm 1 is the pseudo code of a basic serial algorithm
of CSR format based SpMV, i.e. Y = AR. The outer loop
enumerates all rows by performing a sparse vector - dense
vector dot production. To calculate the doc production, firstly
the elements in the vector R are gathered by the indices of the
sparse vector, then multiplied with the corresponding values in
the sparse vector, and finally accumulated to the results.

1:

C. FPGA and GPU Implementation

There are many implementations of SpMV on FPGA.
deLorimier and DeHon implemented a SpMV algorithm on
FPGA and achieved 2.24GFLOPS on a Virtax-II FPGA[4].
Yan Zhang presented a FPGA and GPU comparison for SpMV,
but the FPGA architecture requires that each row has a
minimum of 8 non-zero data, otherwise, the performance will
be highly reduced[5]. There are also other implementations, but
nearly all of them have a limitation that Matrix s dimension is
less than 100,000, thus the vector value can be stored on-chip.
However, the random accessing pattern of vector value make
this memory concerned about latency. So when the matrix s
scale becomes large, on-chip memory cannot support this kind
of access. In our implementation, we will use multiple off-chip
SRAM and efficient partition scheme to handle this problem.

The implementation of SpMV on GPU platform received
great attention. SpMV was firstly accelerated using a one-
thread-onerow (1T1R) method [6]. The 1T1R method suffers
from the various numbers of non-zeros each row, so that its
performance improvement is not notable. A scan-based method
used in [6] was also explored to accelerate the SpMV operation.
A technical report from IBM Research [7] demonstrated how
to optimize SpMV using Compile-time and Run-time strategies.
The acceleration of SpMV was also designed and tested with
different sparse matrix format [8]. In [8], a one-warp one-row
(1W1R) method was introduced to reduce the divergences
between different rows. The 1W1R method has shown great
performance gain in the experiment. Besides GPUs, this
operation was also accelerated on Cell platform [9]. All of
these methods are not specifically designed to target the web
linkage matrix, which is very large in size and very sparse in
density. Our experiments show that both 1T1R and 1W1R
methods suffer from performance drop when processing web
linkage matrices, due to underutilization of hardware capacities.
In our implementation, we address the characteristics of web
linkage matrices to achieve better performance.

III. FPGA IMPLEMENTATION OF SPMV

In FPGA implementation of SpMV, the memory hierarchy
needs to be carefully designed, different from CPU and GPU
implementations which have a fixed memory hierarchy. At the
same time, the parallelism should also be concerned in order to
improve the performance.

A. Overview of the Architecture

The SpMV design architecture on FPGA is shown in figure
1. Firstly, there are several PEs (processing elements) which
implement the functions of the algorithm in a parallel way.
Secondly, there are 4 memories which contain matrix s non-
zero value Av, column position Aj, row/row_pointer Ap and
vector value respectively. The memory type depends on the
storage column and processing/accessing pattern. Thirdly, there
are processor scheduler and data manager to scheduling the
work status and data accessing. SpMV is not a control
intensive application but a data and computation intensive one.
The most important thing is how to efficiently fulfill the
memory bandwidth and instantiate as many PEs as the FPGA
can support.

2010 IEEE 8th Symposium on Application Specific Processors (SASP) 65

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 27,2010 at 07:23:33 UTC from IEEE Xplore. Restrictions apply.

Vector
SRAM

SRAM

Controller

250MHz Data

FIFO

Address

FIFO
PE 1

125MHz

PE 2

125MHz

32b
32b

32b

32b

32b

32b

Rowptr
SRAM

SRAM

Controller

250MHz Data

FIFO

Address

FIFO

32b

32b

32b

32b

32b

32b

32b

32b

32b

32b

Data
FIFO

Data

FIFO

256bDDR2

SDRAM
Controller

Matrix

DDR2
SDRAM

DDR2
SDRAM
Controller

Column
DDR2
SDRAM

256b

Address
generator

nT

Figure 1. SpMV architecture on FPGA

For the datasets in Table 1, 8 PEs which run at 125MHz are
instantiated to accelerate the SpMV implementation. Two
DDR2 SDRAMs are used for Matrix and column storage. Each
DDR2 has 256 bits data width in local side, which can serve 8
PEs at the same time. Two synchronized SRAMs are used for
vector and rowpointer storage. Both of them have a 32 bits data
width and run at 250MHz by the ZBT SRAM controller. So,
one SRAM can provide data for 2 PEs. In total, to implement
the SpMV algorithm for the Table 1 datasets, 8 PEs, 2 DDR2
SDRAMs and 8 SRAMs are needed.

B. Parallelsim and Task Scheduling

FPGA is a parallel platform and contains lots of logic
elements that work concurrently. For SpMV application, the
parallelism comes from the multiplications for different rows in
the matrix. In the former situation, a fixed number of PEs will
compute the multiplications for one row. If the row contains
less non-zero values than the PE number, the dummy data must
be inserted. The more PEs are instantiated, the more dummy
data are inserted. So, in most cases, the matrix is partitioned by
rows and each PE accounts for several sequential rows. In
order to assure the load balance, the tasks assigned to different
PEs should have similar non-zero data.

Another way to assign tasks is to partition the matrix by
column. The n*n square matrix is partitioned into several n*
(n is n/m) matrix and the vector are partitioned in the similar
way. In this case, each PE is responsible for a partial SpMV
and another reduction operation will be needed to merge the
partial results into the final result which is the disadvantage of
this partition method. The advantage of this method is that each
PE only has to store a part of the vector value which is
randomly accessed.

For the datasets in Table 1, the matrix is partitioned by
rows and the partitioned tasks are assigned to the 8 PEs in a
load balance way.

C. Memory Hierachy and Data Scheduling

For the matrix s non-zero data storing, if the matrix is not
that sparse and has more than one value in one row, the Av

storage is the largest among all the parts of input data. And the
access pattern for this part is sequential, so it can be stored in
on-chip memory, off-chip SRAM or DDRx SDRAM according

to its scale. Column position Aj has the same number as Av, so
it can be stored in the same way.

For the row position, if the original format of sparse matrix
is used, the row position storage is the same as the non-zero
data. If the CSR format is adopted, row_pointer Ap must be
stored separately for different PEs.

Individual vector data has to be prepared for different PEs
due to the random access. At the same time, the data stream
requires the vector access must be finished in no-wait cycle.
Because of this, only the SRAM can be used here. If the vector
data is less than 512kbit, it can be stored on-chip using the
MRAM in Altera s FPGAs. Because the MRAM can support
dual port accessing, one MRAM can serve 2 PEs. Take Stratix
II EP2S180 as example; there are 9 MRAMs which can
support 18 PEs only by using MRAM resource.

If the vector data is much larger than 512kbits, it has to be
stored in off-chip SRAM. The popular synchronized SRAM
can support 36bit data width at 250MHz and 72Mbits in size.
For the PE logic runs at 125MHz, one SRAM can store vector
for 2 PEs. Figure 1 use this type of vector memory for PEs.
However, if vector is much larger than 72Mbits, the solution is
to use more SRAMs or just let the processing discontinuous.

The solutions above are all based on the row partition
method. If we partition the matrix by column, the vector can be
partitioned at the same time. In this scenario, the vector size
can be 72Mbits* NPE. But the disadvantage is that we have to
store the intermediate results and do one more reduction
operation.

Matrix
dimension

Sparse
degree

Partition
method

Vector
storage

Matrix
storage

Represent
method

~512k/8 very By rows MRAM MRAM CSR

~512k/8 common By rows MRAM
SRAM/

DDRx
CSR

~72M/8 very By rows SRAM
SRAM/

DDRx
CSR

~72M/8 common By rows SRAM DDRx CSR

>>72M/8
By

columns
SRAM DDRx

absolute
coordinate

For the datasets in Table 1, two DDR2 SDRAMs are used
for Matrix and column storage and eight SRAMs are used for
vector and rowpointer storage according to their size and
access pattern.

D. Processing Elements

The processing elements for SpMV is MAC (multiply-
accumulate) module. The PE will firstly fetch the rowpointer
value Ap which suggests how many non-zero value is there in
this row. Then the PE will do the one matrix row multiplying
vector operation until all the non-zero values in this row have
been processed. These intermediate data will be accumulated to
build the final result. In order to improve the performance, the
key problem is how to build an efficient MAC module which
can serve streaming input data processing.

66 2010 IEEE 8th Symposium on Application Specific Processors (SASP)

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 27,2010 at 07:23:33 UTC from IEEE Xplore. Restrictions apply.

Valid

data

Valid
data

Add

Pipe-

line

Add

State

Done

Adder Input

Stack0

PTR

Stack1
PTR

Clear

Another
Done

Clear
Which task is
more

important/old

Input data

Result
Another

Result
Valid
data

0/1 by

turn

Figure 2. The architecture of Processing Elements

In our floating point accumulator, several cycles
computation resource of the pipeline adder is wasted. Most of
the tasks are short, the starting and ending phased will make
the efficiency of the adder below 50%. In our implementation,
two buffers are instantiated to execute two tasks at the same
time. When the first task occupying the adder, the
accumulator sends two numbers of the second task (stored in
another buffer) into the adder. Adder State is the register that is
used to distinguish the current user of the adder. Simply to say,
the adder will execute the tasks in turn to make full use of the
adder. Though the results will be out of order, the adder can be

more efficient. In this way the bottleneck is changed to

bandwidth of memory, instead of PE s computation power.

IV. AMD RV870 ARCHITECTURE

AMD has a general purpose programming platform for its
GPUs, named ATI Stream. In this section, we briefly discuss
the hardware functionality and programming model of AMD
RV870 GPUs, which belong to the latest family of AMD GPUs.
Please refer to [11] for detailed information.

A. Memory Hierarchy

In RV870, several memory resources can be used, each
with different access constraints and speed. General purpose
registers (GPRs) are the fastest memories. Each thread has
access to up to 127 GPRs in float4 type, which is a short vector
with 4 single precision floating point elements, named x, y, z
and w.

Each SIMD engine has a 32KB dedicated Local data
sharing memory (LDS) which enables low latency data sharing
between threads in the same SIMD. On RV870, the LDS is
organized in 32-bank*256-row structure. Each memory entry is
32-bit width. The LDS supports random access.

Off-chip graphic memory is the largest and slowest
memory resource. It supports several access models. In
compute mode, input-only resources can be allocated as image
resources, which support texture sampling. Each kernel can
bind multiple image resources. Read-write resources can be
allocated as Uniform Access Views (UAVs) or global buffer.
On RV870, multiple UAVs are supported; however, only one
global buffer is supported. UAVs and the global buffer support
several atomic operations.

B. Computation Units and Programming Model

The stream cores or ALUs are organized as 5-way VLIW
processors, called thread processors. Each thread processor
contains four normal cores that can perform 32-bit integer or
floating point arithmetic, and one transcendental core that can
perform transcendental functions such as trigonometric or
exponential functions.

In RV870, 16 thread processors are grouped into a SIMD
engine and there are 20 SIMD engines altogether. All thread
processors in a SIMD engine performs the same instruction at
any time, but on different datasets; different SIMD engines can
perform different instructions. In a programmer's view, the
width of SIMD engines is 64, due to hardware switching of
threads. The bundle of 64 threads that simultaneously run on a
SIMD is called a wavefront. The total run time of a wavefront
is determined by the slowest thread in it.

There are two types of kernels, pixel shader (PS) and
compute shader (CS). CS is usually used in general purpose
computing. In this mode, threads are organized in groups. Each
group consists of several wavefronts. These wavefronts are
guaranteed to be run on the same SIMD engine, and thus can
share data through the LDS. Threads in different groups cannot
share data through the LDS.

V. GPU ACCELERATION OF SPMV

In this section, we briefly discuss the characteristics of
typical web linkage matrices and our implementation of SpMV
on AMD GPUs.

A. Characteristics of Web Linkage Matrices

The width and height of a web linkage matrix, Nrow is
usually very large, which easily reaches millions or billions.
However, the average number of links in a page is small and
remains relatively stable. Table 1 shows the statistics of
datasets we used in our work. Although the size of Wikipedia
linkage matrix grows greatly, the average number of links on
each page remains around 12. On the other hand, the average
number of links of pages in the edu domain is even lower.
Hence, web linkage matrices are extremely sparse. The larger a
web linkage matrix is, the lower the density is.

Table 1. Statistics of the datasets.

Dataset #rows, Nrow #non-zero

values, Nnz

#avg non zero

values/row

Wikipedia-20051105 1,634,989 19,753,078 12.08

Wikipedia-20060925 2,983,494 37,269,096 12.49

Wikipedia-20061104 3,148,440 39,383,235 12.50

Wikipedia-20070206 3,566,907 45,030,389 12.62

Edu-2001 9,845,725 57,156,537 5.81

2010 IEEE 8th Symposium on Application Specific Processors (SASP) 67

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 27,2010 at 07:23:33 UTC from IEEE Xplore. Restrictions apply.

Moreover, the non-zero values of different rows are highly
uneven. Over 40% of rows have less than or equal to 1 non-
zero elements; over 95% of rows have less than 64 non-zero
elements.

B. SpMV Implementation

The basic SpMV routine can be directly ported to multi-
threaded platforms by mapping each row-vector dot production
to a GPU thread, i.e. the 1T1R method.

In this method, each thread loops through all non-zero
values of one row, fetches the vector data according to the
column indices of these non-zero values, and accumulates the
products of corresponding vector and matrix values.

However, due to the differences with non-zero sizes of
rows, the workloads of all threads are not well balanced in this
method. On GPUs, threads are scheduled in bundles, which are
called warps or wavefronts. Unbalanced workload within a
wavefront may lead to hardware underutilization. To better
balance the workload of threads within a wavefront, we
rearrange the order of matrix rows being processed according
to their sizes. Hence, rows with similar sizes are likely to be
processed in a same wavefront.

To rearrange the rows, we pre-process the CSR matrix and
sort the sizes of rows in an ascendant order. Before sorting, we
need to save some additional fields for each row, besides the
index of the first value of the row. These additional fields are 1)
the size of the row i, denoted by A0p[i]:size, and 2) the position
of the row, denoted by A0p[i]:index. Ap[i] is now denoted by
A0p[i]:begin. After adding additional fields, we can sort A0p by
the size field.

After rearranging the rows, we have 3 different methods for
rows in different scales, illustrated in Figure 4. Rows with less
than tr1 non-zero values are processed with one thread. The
results of each thread are directly written to the output vector.
Rows with more than tr1 and no more than tr2 non-zero values
are processed by 16 threads. The results of each thread are
merged with 4 steps in the LDS memory. Rows with more than
tr2 non-zeros are processed with entire wavefronts (64 threads
on AMD GPU). Then a binary reduction with 6 steps is needed.
These three classes of problems are denoted to tiny, small and
normal problems respectively.

On AMD GPU, we choose tr1 = 6 and tr2 = 96. These
parameters ensure that in both tiny and small problems, the
loop will not exceed 6 iterations, so that the possible uneven
workload will not lead to great waste of computation power.

VI. EXPERIMENTS AND ANALYSIS

We use five datasets retrieved from the University of
Florida sparse matrix collection [13]. The first four datasets are
extracted from Wikipedia, and they have different data scale
but similar sparse grade. The last one is the largest and sparsest
that is extracted from .edu domain. The statistics of these
datasets are shown in Table 1, and the characteristics of them
are discussed in Section V.

A. Experimental Results

We perform experiments on the Altera StratixII EP2S180
FPGA at 125MHz and Radeon 5870(RV870) GPU at 850MHz.
The comparison CPU is Phenom 9550 at 2.2GHz. The resource
occupation of FPGA implementation is presented in Table 3.

...

...

t0 t1 t2 ... t63WFi

CSR data

Vector In Vector Out

Tiny Rows

(<6 non-zeros)

...

...

......

Random read

...

t0 t15... t63WFi

CSR data

Vector In

Vector Out

Small Rows

(6~95 non-zeros)
...

...

......

Random read

t16 ... t31 t32 ... t47 t48 ...

...

LDS Reduce

...

t0 t15... t63WFi

CSR data

Vector In Vector Out

Normal Rows

(>95 non-zeros)
...

...

......

Random read

t16 ... t31 t32 ... t47 t48 ...

...

LDS Reduce

WFj

a) Each thread processes a tiny row with <6 non-zero elements. Each thread

output the result. b)16 threads process a small row with 6~95 non-zero elements.

After local reduction, 4 results are written. c) 64 threads process a normal row

with >95 non-zero elements. 1 result is written after the reduction.

Figure 4. Three types of kernel/thread allocation and reduction

Table 2 is the summarized experiment results of SpMV. It
shows the average time for SpMV computation. We can see
that up to 29x and 30x speedup is obtained on FPGA and GPU
respectively. For FPGA implementation, since the computation
is pipelined, the time cost equals to the data transferring cost.
But for the empty rows, one cycle has to be wasted to do the
judgment. When several PEs are instantiated, the overall
computation time will be determined by the slowest PE. Hence,
it is important to balance the workload before the computation.

Table 2. Performance of SpMV

Dataset
Time(ms) Speedup

CPU FPGA GPU FPGA GPU

wikipedia-20051105 462.3 20.21 18.08 22.9 25.6

wikipedia-20060925 985.3 38.14 35.98 25.8 27.4

wikipedia-20061104 1048.4 40.32 38.13 26.0 27.5

wikipedia-20070206 1354.1 46.11 43.91 29.4 30.8

edu-2001 282.1 57.87 28.99 4.87 9.7

68 2010 IEEE 8th Symposium on Application Specific Processors (SASP)

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 27,2010 at 07:23:33 UTC from IEEE Xplore. Restrictions apply.

Table 3. Resource occupation of FPGA implementation

Resource PE*8 ddr2 ctrl*2 total

Percentage 29% 3% 36%

B. Discussion

In this section, we will discuss three aspects. The first is our
current implementation does not fully utilize the hardware s
capacity both for FPGA and GPU. For FPGA, we can
instantiate more PEs; and for GPU, the 4 way vector arithmetic
is currently underutilized. The second is the scalability and
usability of our method for larger datasets, such as the whole
internet web linkage data. We will also discuss the design
efforts of the two platforms when adopting MapReduce
framework and OpenCL respectively.

1) More PEs for FPGA Implementation
Altera StratixII EP2S180 offers about 140K logic elements,

but we just use 36% of them to achieve the similar
performance as GPU. Theoretically, the performance can be 3
times higher with more PEs and more memory instances.
Another hard limit is that the FPGA has a fixed number of I/O
pins which can be used for more memory interfaces. The
matrix data access can utilize the high bandwidth of the DDRx
SDRAM for continuous access, but the demand for random
access for the vector pushes us to duplicate many SRAMs in
order to retain low access latency. Moreover, the SRAMs are
expensive.

One way to ease this problem is to partition the matrix
vertically as introduced in section 3. In this way, each PE only
need a part of the vector value, the SRAM capacity
requirement can be reduced by NPE times. However, at the
same time, we need additional computation resources to handle
the reduction operation in this method.

2) AMD GPU Short Vector Utilization
AMD GPUs are optimized for 128-bit memory access and

vector arithmetic. In order to evaluate whether we should
explicitly utilize this feature, we compare our original method
with the 1x4 blocked CSR format based method. Table 4
shows the performance and memory consumption while using
the float4 short vector. From the results, we find that the
performance is actually decreased when using the short vector.
Due to the extremely low density of the matrix, it is very rare
to have a float4 vector containing more than 1 non-zero
elements. Hence, the times of memory fetch do not decrease
notably, even if float4 short vector type is utilized. However,
the total amount of data scale increased significantly.

Table 4. CSR and 1x4 BCSR SpMV Comparisons

Dataset Time(ms) Av size(MB)

CSR BCSR CSR BCSR

wiki-20051105 18.08 18.89 79 300

wiki-20060925 35.98 37.35 149 577

3) Scaling to Larger Datasets on both FPGA and GPU
For FPGA, when scaling to larger datasets, the vertical

partition method can be used to ease the memory limitation.
But the scale can be only tens of times than the current one if
SRAMs are not added to the board. Another way is to use
DDRx SDRAM to store the vector values when the data keep

increasing. In this case, the system will cost several cycles for
the random access latency. The optimized memory hierarchy
for this scenario is to use cache architecture as the CPU and
GPU do.

For GPU, when the data scales too large for the graphic
memory to store, we can only store it in the system memory.
One method is to split it into several tiles. The vector multiplies
each tile either on CPU or on GPU. The preprocessing only
takes place on GPU tiles and different tiles can be pre-
processed independently. Moreover, the scheduling system
should be carefully designed so that the overhead of
transferring matrix tiles can be hidden by the computation. This
is achieved by the concurrent running of DMA data transfer
and GPU kernel.

4) Discussion about the Programming Model
For the FPGA implementation, design effort is really a big

problem. Nowadays, there are several frameworks for FPGA
design those can ease the effort [15, 16]. We have proposed
FPMR framework in [15], which is the MapReduce framework
on FPGA. MapReduce framework on FPGA is a promising
framework that can hide the synchronization and
communication cost by dynamic processor scheduling. For
SpMV design, the multiply operation can be thought as the
Map operation, and the accumulate operation can be thought as
the Reduce operation. Under this framework, it is easy to build
a quick version of SpMV implementation. However, for SpMV,
each task is really small. The dynamic processor scheduling
will be the large portion of the cost. So, maybe the MapReduce
framework fits for the matrix-vector multiply that is not that
sparse.

The OpenCL framework is a novel one that can take
advantage of the parallel processing power of both CPUs and
GPUs. It is a promising technology, especially addressing the
issues of programming heterogeneous parallel systems. The
current AMD OpenCL support has a few constraints related to
memory allocation and control. For example, the memory
space that can be used is relatively small compared to CAL/IL
in the same graphic card. And the maximum size of a single
buffer is no more than a quarter of the total graphic memory.
Meanwhile, remote memory is not supported, which brings the
difficulty in using typical Ping-Pong buffers. Despite these
constraints, OpenCL greatly ease the programming effort
compared to CAL/IL, and the drawback in performance is
affordable.

FPGAs and GPUs have different implementation features
for SpMV application. For FPGA, more flexibility in the
hardware makes the upgrade easy by adding more memory and
duplicating more PEs. Of course, the memory hierarchy and
processor scheduling scheme should be tuned according to the
larger task. GPU has more powerful floating point computation
ability, but the fixed hardware architecture makes the upgrade
can be done only by program mapping. For the design efforts,
GPU is easier to program than FPGA. Although many
frameworks have been proposed, to be compliant with different
platforms, the performance will still rely on the designer s
effort.

2010 IEEE 8th Symposium on Application Specific Processors (SASP) 69

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 27,2010 at 07:23:33 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

In this paper, we accelerated the SpMV computation on
FPGA and AMD GPUs. In FPGA implementation, we design a
pipeline processing element and perform the task partition to
memory hierarchy mapping according to the matrix s scale. In
GPU implementation, we carefully classified the problem into
three sub-classes and designed efficient kernels. In the
experiments, up to 29x and 30x speedup is obtained
respectively. The major bottleneck of our current
implementation is the vector accessing/gathering operation in
SpMV, which requires random accesses to the device memory.
For FPGA, several SRAMs have to be used to avoid latency in
the cost of expensive memory. For GPU, the fixed memory
hierarchy makes the cache hit rate generally low. In the future,
we shall find methods to ease the latency by only using DDRx
SDRAM to store the vector value on FPGA and increase the
cache hit rate on GPU, which will further increase the overall
performance.

ACKNOWLEDGMENT

This work was supported by National Key Technological
Program of China No. 2008ZX01035-001, NSFC No.
60870001, AMD UR project, and Tsinghua National
Laboratory for Information Science and Technology Cross-
discipline Foundation.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web, 1999.

[2] Martin C. Herbordt, Tom VanCourt, Yongfeng Gu, Bharat Sukhwani, Al
Conti, Josh Model, Doug DiSabello, Achieving High Performance with

FPGA-Based Computing, Computer, Volume 40 , Issue 3 (March 2007),
Pages 50-57

[3] FPGAs and Moore's Law , http://www.ciol.com/Semicon/Design-
Trends/News-Reports/FPGAs-and-Moores-Law/111108112450/0/

[4] Michael deLorimier, Andre DeHon, Floating-point Sparse Matrix-
Vector Multiply for FPGAs, FPGA 2005.

[5] Yan Zhang, FPGA vs. GPU for Sparse Matrix Vector Multiply, ICFPT
2009.

[6] M. Garland. Sparse matrix computations on manycore
 Design Automation

Conference, pages 2 6, New York, NY, USA, 2008. ACM.

[7] M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vector
multiplication on gpus using compiletime and run-time strategies.
Technical report, IBM Technical Report, 2008.

[8] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on
cuda. Technical report, NVIDIA Technical Report NVR-2008-004, 2008.

[9] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick.
Scientific computing kernels on the cell processor. Technical report, UC
Berkeley Technical Report, 2008.

[10] D. R. Kincaid, T. C. O. Oppe, and D. M. Young.
Guide. Report CNA-232, The University of Texas at Austin, May 1989.

[11] Advanced Micro Devices, Inc. ATI Intermediate Language (IL)
Specification, Dec 2009.

[12] M. G. Nathan Bell. Efficient sparse matrix-vector multiplication on cuda.
Technical report, NVIDIA, Dec 2008.

[13] T. Davis. University of florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices.

[14] S Williams, L Oliker, R Vuduc, J Shalf, K Yelick, J Demmel,
Optimization of sparse matrix vector multiplication on emerging
multicore platforms, Parallel Computing, Volume 35, Issue 3, March
2009, Pages 178-194.

[15] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, Huazhong Yang,
FPMR: MapReduce framework on FPGA, FPGA 2010.

[16] Kuen Hung Tsoi, Wayne Luk: Axel: a heterogeneous cluster with
FPGAs and GPUs. FPGA 2010.

70 2010 IEEE 8th Symposium on Application Specific Processors (SASP)

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 27,2010 at 07:23:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

