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Abstract Sparse matrix-vector multiplication (SpMV) is a 

fundamental operation for many applications. Many studies have 

been done to implement the SpMV on different platforms, while 

few work focused on the very large scale datasets with millions of 

dimensions. This paper addresses the challenges of implementing 

large scale SpMV with FPGA and GPU in the application of web 

link graph analysis. In the FPGA implementation, we designed 

the task partition and memory hierarchy according to the 

analysis of datasets scale and their access pattern. In the GPU 

implementation, we designed a fast and scalable SpMV routine 

with three passes, using a modified Compressed Sparse Row 

format. Results show that FPGA and GPU implementation 

achieves about 29x and 30x speedup on a StratixII EP2S180 

FPGA and Radeon 5870 Graphic Card respectively compared 

with a Phenom 9550 CPU. 

Keywords-component; SpMV; FPGA; AMD GPU; memory 

hierachy 

I. INTRODUCTION 

Sparse matrix-vector multiplication (SpMV) is an 
important subroutine in numerical linear algebra. The sparse 
matrix means a large matrix mostly composed of zero entities. 
As the data scales, it brings many challenges to the storage and 
computation of the SpMV for large scale applications. For 
example, the current Internet has hundreds of billions of web 
pages, the ranking of which becomes a valuable and 
challenging problem. The most widely used method is the 
PageRank [1], which iteratively perform sparse matrix-vector 
multiplication (SpMV) over all the web pages  linkages. A 
high performance, cost-effective SpMV computation solution 
will benefit a lot of applications in research and commercial 
computing. 

As the physical constraints are preventing frequency 
scaling of CPUs and power consumption is becoming a critical 
problem recent years, the parallel computing becomes the 
dominant paradigm for large scale computing applications. 
There are already many studies which use the parallel 
computing platforms to accelerate the SpMV algorithm, such 
as the multi-cores [14], clusters, GPUs [6-8] and FPGAs [4, 5]. 
In the multi-cores and clusters implementation, the 
programming is easy and flexible, because designers do not 
need to care about the memory access and computation 
sequence. However, the multi-threads  memory access will 
cause many performance penalties and the power consumption 
is still a crucial problem for the CPU based platforms.  

As one of the alternative computing platforms, FPGAs has 
been widely explored in various high performance computing 
applications in recent years [2], because i) FPGA is 
reconfigurable and easy to change functionalities without 
changing the platform; ii) logic elements in FPGA work in a 
naturally fine-grained parallel way with high flexibility; and iii) 
FPGA is one of the best hardware devices that can follow the 
Moore's Law persistently [3]. Although FPGA researchers 
have implemented SpMV through many methods [4, 5], the 
matrix they used is either too small or not so sparse. In that 
scenario, the vectors  random accessing problem can be solved 
by storing them on-chip and the processor scheduling cost 
between tasks is really small. In the FPGA implementation of 
this paper, we analyzed different scale of datasets, and then 
proposed different memory hierarchies for them. For the 
computation, we design a stack based accumulator which can 
support the continuous data stream processing and a static 
processor scheduling scheme to cover the scheduling cost. 

Another important computing platform, the graphic 
processing units (GPUs) have become popular during recent 
years. GPUs are massively parallel devices with high 
computation performance and high power efficiency. Many 
previous studies focused on accelerating SpMV with GPU [6, 7, 
8]. However, general purpose SpMV routines do not perform 
well for large scale matrix operations used in PageRank 
application. In the GPU implementation of this paper, we 
analyzed the characteristic of the sparse matrices used in 
PageRank, and introduced a fast SpMV using a modified 
Compressed Sparse Row (CSR) format. The linkage matrices 
used in PageRank are always very sparse, with highly uneven 
row sizes (number of non-zero values in a row). Our SpMV 
subroutine is highly optimized for the AMD GPU architecture 
using AMD Compute Abstraction Layer (CAL) and 
Intermediate Language (IL).  

In this paper, we use both FPGA and AMD GPU to 
implement the SpMV algorithm for the web linkage datasets. 
The purpose is to provide efficient computation solutions in 
these two widely available acceleration platforms. For each 
platform, the optimized methods are analyzed according to the 
hardware architecture. Processing parallelism, processor 
scheduling, and memory hierarchy are discussed for both 
FPGA and GPU implementations. The main contributions of 
this paper are: 
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1. A reasonable mapping SpMV to platform according to 
the architecture and the  feature; 

2. Specifying several types of task partition and memory 
hierarchy methods on FPGA design according to 
different scales of dataset; 

3. Giving an optimized design method on AMD GPU 
based on the analysis of web linkage matrices, and 
discussing the scalability of the GPU implementation. 

The remainder of this paper is organized as follows. Section 
2 gives some background knowledge and a review on related 
works. Section 3 introduces the FPGA implementation of 
SpMV. Section 4 gives a brief introduction to the AMD RV870 
GPU. The optimized GPU implementation of SpMV is 
discussed in Section 5. The experimental results are presented 
and analyzed in Section 6. Section 7 concludes this work. 

II. BACKGROUND KNOWLEDGE AND RELATED WORKS

In this part, the SpMV algorithm and a typical 
representation method of the sparse matrix (CSR) will be 
introduced. Then the implementations of SpMV algorithm will 
be surveyed and their feature will be analyzed. 

A. The CSR Format 

In order to analyze the SpMV algorithm, the CSR format 
will be introduced firstly for the very sparse matrix 
representation. The Space requirement of the CSR format 
scales linearly with the number of non-zero values in the 
matrix. In the CSR format, Nnz non-zero values in the sparse 
matrix A are stored in a row-major vector Av, and another 
vector Aj records the column position of each non-zero value in 
Av. There is also a vector Ap which records the start and end 
position of each row in Av. An example of the CSR format is 
given as follows. 

A =  2 3 0 

0 1 0 

1 0 0 

Av = [2 3 1 1]; Aj = [0 1 1 0]; Ap = [0 2 3 4] 
We shall implement our SpMV based on a modification of 

this representation of sparse matrices. 

B. SpMV 

Algorithm 1 is the pseudo code of a basic serial algorithm 
of CSR format based SpMV, i.e. Y = AR. The outer loop 
enumerates all rows by performing a sparse vector - dense 
vector dot production. To calculate the doc production, firstly 
the elements in the vector R are gathered by the indices of the 
sparse vector, then multiplied with the corresponding values in 
the sparse vector, and finally accumulated to the results. 

1:

C. FPGA and GPU Implementation 

There are many implementations of SpMV on FPGA. 
deLorimier and DeHon implemented a SpMV algorithm on 
FPGA and achieved 2.24GFLOPS on a Virtax-II FPGA[4]. 
Yan Zhang presented a FPGA and GPU comparison for SpMV, 
but the FPGA architecture requires that each row has a 
minimum of 8 non-zero data, otherwise, the performance will 
be highly reduced[5]. There are also other implementations, but 
nearly all of them have a limitation that Matrix s dimension is 
less than 100,000, thus the vector value can be stored on-chip. 
However, the random accessing pattern of vector value make 
this memory concerned about latency. So when the matrix s 
scale becomes large, on-chip memory cannot support this kind 
of access. In our implementation, we will use multiple off-chip 
SRAM and efficient partition scheme to handle this problem. 

The implementation of SpMV on GPU platform received 
great attention. SpMV was firstly accelerated using a one-
thread-onerow (1T1R) method [6]. The 1T1R method suffers 
from the various numbers of non-zeros each row, so that its 
performance improvement is not notable. A scan-based method 
used in [6] was also explored to accelerate the SpMV operation. 
A technical report from IBM Research [7] demonstrated how 
to optimize SpMV using Compile-time and Run-time strategies. 
The acceleration of SpMV was also designed and tested with 
different sparse matrix format [8]. In [8], a one-warp one-row 
(1W1R) method was introduced to reduce the divergences 
between different rows. The 1W1R method has shown great 
performance gain in the experiment. Besides GPUs, this 
operation was also accelerated on Cell platform [9]. All of 
these methods are not specifically designed to target the web 
linkage matrix, which is very large in size and very sparse in 
density. Our experiments show that both 1T1R and 1W1R 
methods suffer from performance drop when processing web 
linkage matrices, due to underutilization of hardware capacities. 
In our implementation, we address the characteristics of web 
linkage matrices to achieve better performance. 

III. FPGA IMPLEMENTATION OF SPMV 

In FPGA implementation of SpMV, the memory hierarchy 
needs to be carefully designed, different from CPU and GPU 
implementations which have a fixed memory hierarchy. At the 
same time, the parallelism should also be concerned in order to 
improve the performance. 

A. Overview of the Architecture 

The SpMV design architecture on FPGA is shown in figure 
1. Firstly, there are several PEs (processing elements) which 
implement the functions of the algorithm in a parallel way. 
Secondly, there are 4 memories which contain matrix s non-
zero value Av, column position Aj, row/row_pointer Ap and 
vector value respectively. The memory type depends on the 
storage column and processing/accessing pattern. Thirdly, there 
are processor scheduler and data manager to scheduling the 
work status and data accessing. SpMV is not a control 
intensive application but a data and computation intensive one. 
The most important thing is how to efficiently fulfill the 
memory bandwidth and instantiate as many PEs as the FPGA 
can support. 
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Figure 1. SpMV architecture on FPGA 

For the datasets in Table 1, 8 PEs which run at 125MHz are 
instantiated to accelerate the SpMV implementation. Two 
DDR2 SDRAMs are used for Matrix and column storage. Each 
DDR2 has 256 bits data width in local side, which can serve 8 
PEs at the same time. Two synchronized SRAMs are used for 
vector and rowpointer storage. Both of them have a 32 bits data 
width and run at 250MHz by the ZBT SRAM controller. So, 
one SRAM can provide data for 2 PEs. In total, to implement 
the SpMV algorithm for the Table 1 datasets, 8 PEs, 2 DDR2 
SDRAMs and 8 SRAMs are needed. 

B. Parallelsim and Task Scheduling 

FPGA is a parallel platform and contains lots of logic 
elements that work concurrently. For SpMV application, the 
parallelism comes from the multiplications for different rows in 
the matrix. In the former situation, a fixed number of PEs will 
compute the multiplications for one row. If the row contains 
less non-zero values than the PE number, the dummy data must 
be inserted. The more PEs are instantiated, the more dummy 
data are inserted. So, in most cases, the matrix is partitioned by 
rows and each PE accounts for several sequential rows. In 
order to assure the load balance, the tasks assigned to different 
PEs should have similar non-zero data.  

Another way to assign tasks is to partition the matrix by 
column. The n*n square matrix is partitioned into several n*
(n  is n/m) matrix and the vector are partitioned in the similar 
way. In this case, each PE is responsible for a partial SpMV 
and another reduction operation will be needed to merge the 
partial results into the final result which is the disadvantage of 
this partition method. The advantage of this method is that each 
PE only has to store a part of the vector value which is 
randomly accessed.  

For the datasets in Table 1, the matrix is partitioned by 
rows and the partitioned tasks are assigned to the 8 PEs in a 
load balance way. 

C. Memory Hierachy and Data Scheduling 

For the matrix s non-zero data storing, if the matrix is not 
that sparse and has more than one value in one row, the Av

storage is the largest among all the parts of input data. And the 
access pattern for this part is sequential, so it can be stored in 
on-chip memory, off-chip SRAM or DDRx SDRAM according 

to its scale. Column position Aj has the same number as Av, so 
it can be stored in the same way. 

For the row position, if the original format of sparse matrix 
is used, the row position storage is the same as the non-zero 
data. If the CSR format is adopted, row_pointer Ap must be 
stored separately for different PEs.  

Individual vector data has to be prepared for different PEs 
due to the random access. At the same time, the data stream 
requires the vector access must be finished in no-wait cycle. 
Because of this, only the SRAM can be used here. If the vector 
data is less than 512kbit, it can be stored on-chip using the 
MRAM in Altera s FPGAs. Because the MRAM can support 
dual port accessing, one MRAM can serve 2 PEs. Take Stratix 
II EP2S180 as example; there are 9 MRAMs which can 
support 18 PEs only by using MRAM resource. 

If the vector data is much larger than 512kbits, it has to be 
stored in off-chip SRAM. The popular synchronized SRAM 
can support 36bit data width at 250MHz and 72Mbits in size. 
For the PE logic runs at 125MHz, one SRAM can store vector 
for 2 PEs. Figure 1 use this type of vector memory for PEs. 
However, if vector is much larger than 72Mbits, the solution is 
to use more SRAMs or just let the processing discontinuous. 

The solutions above are all based on the row partition 
method. If we partition the matrix by column, the vector can be 
partitioned at the same time. In this scenario, the vector size 
can be 72Mbits* NPE. But the disadvantage is that we have to 
store the intermediate results and do one more reduction 
operation. 

Matrix 
dimension 

Sparse 
degree 

Partition 
method 

Vector 
storage 

Matrix 
storage 

Represent 
method 

~512k/8 very By rows MRAM MRAM CSR 

~512k/8 common By rows MRAM 
SRAM/ 

DDRx 
CSR 

~72M/8 very By rows SRAM 
SRAM/ 

DDRx 
CSR 

~72M/8 common By rows SRAM DDRx CSR 

>>72M/8 
By 

columns
SRAM DDRx 

absolute 
coordinate 

For the datasets in Table 1, two DDR2 SDRAMs are used 
for Matrix and column storage and eight SRAMs are used for 
vector and rowpointer storage according to their size and 
access pattern. 

D. Processing Elements 

The processing elements for SpMV is MAC (multiply-
accumulate) module. The PE will firstly fetch the rowpointer 
value Ap which suggests how many non-zero value is there in 
this row. Then the PE will do the one matrix row multiplying 
vector operation until all the non-zero values in this row have 
been processed. These intermediate data will be accumulated to 
build the final result. In order to improve the performance, the 
key problem is how to build an efficient MAC module which 
can serve streaming input data processing. 
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Figure 2. The architecture of Processing Elements 

In our floating point accumulator, several cycles
computation resource of the pipeline adder is wasted. Most of 
the tasks are short, the starting and ending phased will make 
the efficiency of the adder below 50%. In our implementation, 
two buffers are instantiated to execute two tasks at the same 
time. When the first task  occupying the adder, the 
accumulator sends two numbers of the second task (stored in 
another buffer) into the adder. Adder State is the register that is
used to distinguish the current user of the adder. Simply to say, 
the adder will execute the tasks in turn to make full use of the 
adder. Though the results will be out of order, the adder can be 

more efficient. In this way the bottleneck is changed to 

bandwidth of memory, instead of PE s computation power. 

IV. AMD RV870 ARCHITECTURE

AMD has a general purpose programming platform for its 
GPUs, named ATI Stream. In this section, we briefly discuss 
the hardware functionality and programming model of AMD 
RV870 GPUs, which belong to the latest family of AMD GPUs. 
Please refer to [11] for detailed information. 

A. Memory Hierarchy 

In RV870, several memory resources can be used, each 
with different access constraints and speed. General purpose 
registers (GPRs) are the fastest memories. Each thread has 
access to up to 127 GPRs in float4 type, which is a short vector 
with 4 single precision floating point elements, named x, y, z 
and w.  

Each SIMD engine has a 32KB dedicated Local data 
sharing memory (LDS) which enables low latency data sharing 
between threads in the same SIMD. On RV870, the LDS is 
organized in 32-bank*256-row structure. Each memory entry is 
32-bit width. The LDS supports random access.  

Off-chip graphic memory is the largest and slowest 
memory resource. It supports several access models. In 
compute mode, input-only resources can be allocated as image 
resources, which support texture sampling. Each kernel can 
bind multiple image resources. Read-write resources can be 
allocated as Uniform Access Views (UAVs) or global buffer. 
On RV870, multiple UAVs are supported; however, only one 
global buffer is supported. UAVs and the global buffer support 
several atomic operations. 

B. Computation Units and Programming Model 

The stream cores or ALUs are organized as 5-way VLIW 
processors, called thread processors. Each thread processor 
contains four normal cores that can perform 32-bit integer or 
floating point arithmetic, and one transcendental core that can 
perform transcendental functions such as trigonometric or 
exponential functions. 

In RV870, 16 thread processors are grouped into a SIMD 
engine and there are 20 SIMD engines altogether. All thread 
processors in a SIMD engine performs the same instruction at 
any time, but on different datasets; different SIMD engines can 
perform different instructions. In a programmer's view, the 
width of SIMD engines is 64, due to hardware switching of 
threads. The bundle of 64 threads that simultaneously run on a 
SIMD is called a wavefront. The total run time of a wavefront 
is determined by the slowest thread in it. 

There are two types of kernels, pixel shader (PS) and 
compute shader (CS). CS is usually used in general purpose 
computing. In this mode, threads are organized in groups. Each 
group consists of several wavefronts. These wavefronts are 
guaranteed to be run on the same SIMD engine, and thus can 
share data through the LDS. Threads in different groups cannot 
share data through the LDS. 

V. GPU ACCELERATION OF SPMV 

In this section, we briefly discuss the characteristics of 
typical web linkage matrices and our implementation of SpMV 
on AMD GPUs.  

A. Characteristics of Web Linkage Matrices 

The width and height of a web linkage matrix, Nrow is 
usually very large, which easily reaches millions or billions. 
However, the average number of links in a page is small and 
remains relatively stable. Table 1 shows the statistics of 
datasets we used in our work. Although the size of Wikipedia 
linkage matrix grows greatly, the average number of links on 
each page remains around 12. On the other hand, the average 
number of links of pages in the edu domain is even lower. 
Hence, web linkage matrices are extremely sparse. The larger a 
web linkage matrix is, the lower the density is. 

Table 1. Statistics of the datasets. 

Dataset #rows, Nrow #non-zero 

values, Nnz

#avg non zero 

values/row 

Wikipedia-20051105 1,634,989 19,753,078 12.08 

Wikipedia-20060925 2,983,494 37,269,096 12.49 

Wikipedia-20061104 3,148,440 39,383,235 12.50 

Wikipedia-20070206 3,566,907 45,030,389 12.62 

Edu-2001 9,845,725 57,156,537 5.81 
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Moreover, the non-zero values of different rows are highly 
uneven. Over 40% of rows have less than or equal to 1 non-
zero elements; over 95% of rows have less than 64 non-zero 
elements. 

B. SpMV Implementation 

The basic SpMV routine can be directly ported to multi-
threaded platforms by mapping each row-vector dot production 
to a GPU thread, i.e. the 1T1R method.  

In this method, each thread loops through all non-zero 
values of one row, fetches the vector data according to the 
column indices of these non-zero values, and accumulates the 
products of corresponding vector and matrix values.  

However, due to the differences with non-zero sizes of 
rows, the workloads of all threads are not well balanced in this 
method. On GPUs, threads are scheduled in bundles, which are 
called warps or wavefronts. Unbalanced workload within a 
wavefront may lead to hardware underutilization. To better 
balance the workload of threads within a wavefront, we 
rearrange the order of matrix rows being processed according 
to their sizes. Hence, rows with similar sizes are likely to be 
processed in a same wavefront.  

To rearrange the rows, we pre-process the CSR matrix and 
sort the sizes of rows in an ascendant order. Before sorting, we 
need to save some additional fields for each row, besides the 
index of the first value of the row. These additional fields are 1)
the size of the row i, denoted by A0p[i]:size, and 2) the position 
of the row, denoted by A0p[i]:index. Ap[i] is now denoted by 
A0p[i]:begin. After adding additional fields, we can sort A0p by 
the size field.  

After rearranging the rows, we have 3 different methods for 
rows in different scales, illustrated in Figure 4. Rows with less 
than tr1 non-zero values are processed with one thread. The 
results of each thread are directly written to the output vector. 
Rows with more than tr1 and no more than tr2 non-zero values 
are processed by 16 threads. The results of each thread are 
merged with 4 steps in the LDS memory. Rows with more than 
tr2 non-zeros are processed with entire wavefronts (64 threads 
on AMD GPU). Then a binary reduction with 6 steps is needed. 
These three classes of problems are denoted to tiny, small and 
normal problems respectively.  

On AMD GPU, we choose tr1 = 6 and tr2 = 96. These 
parameters ensure that in both tiny and small problems, the 
loop will not exceed 6 iterations, so that the possible uneven 
workload will not lead to great waste of computation power.  

VI. EXPERIMENTS AND ANALYSIS

We use five datasets retrieved from the University of 
Florida sparse matrix collection [13]. The first four datasets are
extracted from Wikipedia, and they have different data scale 
but similar sparse grade. The last one is the largest and sparsest
that is extracted from .edu domain. The statistics of these 
datasets are shown in Table 1, and the characteristics of them 
are discussed in Section V. 

A. Experimental Results 

We perform experiments on the Altera StratixII EP2S180 
FPGA at 125MHz and Radeon 5870(RV870) GPU at 850MHz. 
The comparison CPU is Phenom 9550 at 2.2GHz. The resource 
occupation of FPGA implementation is presented in Table 3. 
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CSR data
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WFj

a) Each thread processes a tiny row with <6 non-zero elements. Each thread

output the result. b)16 threads process a small row with 6~95 non-zero elements.

After local reduction, 4 results are written. c) 64 threads process a normal row

with >95 non-zero elements. 1 result is written after the reduction.

Figure 4. Three types of kernel/thread allocation and reduction 

Table 2 is the summarized experiment results of SpMV. It 
shows the average time for SpMV computation. We can see 
that up to 29x and 30x speedup is obtained on FPGA and GPU 
respectively. For FPGA implementation, since the computation 
is pipelined, the time cost equals to the data transferring cost. 
But for the empty rows, one cycle has to be wasted to do the 
judgment. When several PEs are instantiated, the overall 
computation time will be determined by the slowest PE. Hence, 
it is important to balance the workload before the computation. 

Table 2. Performance of SpMV 

Dataset
Time(ms) Speedup 

CPU FPGA GPU FPGA GPU 

wikipedia-20051105 462.3 20.21 18.08 22.9 25.6 

wikipedia-20060925 985.3 38.14 35.98 25.8 27.4 

wikipedia-20061104 1048.4 40.32 38.13 26.0 27.5 

wikipedia-20070206 1354.1 46.11 43.91 29.4 30.8 

edu-2001 282.1 57.87 28.99 4.87 9.7 

68 2010 IEEE 8th Symposium on Application Specific Processors (SASP)

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 27,2010 at 07:23:33 UTC from IEEE Xplore.  Restrictions apply. 



Table 3. Resource occupation of FPGA implementation 

Resource PE*8 ddr2 ctrl*2 total 

Percentage 29% 3% 36% 

B. Discussion 

In this section, we will discuss three aspects. The first is our 
current implementation does not fully utilize the hardware s 
capacity both for FPGA and GPU. For FPGA, we can 
instantiate more PEs; and for GPU, the 4 way vector arithmetic 
is currently underutilized. The second is the scalability and 
usability of our method for larger datasets, such as the whole 
internet web linkage data. We will also discuss the design 
efforts of the two platforms when adopting MapReduce 
framework and OpenCL respectively.  

1) More PEs for FPGA Implementation 
Altera StratixII EP2S180 offers about 140K logic elements, 

but we just use 36% of them to achieve the similar 
performance as GPU. Theoretically, the performance can be 3 
times higher with more PEs and more memory instances. 
Another hard limit is that the FPGA has a fixed number of I/O 
pins which can be used for more memory interfaces. The 
matrix data access can utilize the high bandwidth of the DDRx 
SDRAM for continuous access, but the demand for random 
access for the vector pushes us to duplicate many SRAMs in 
order to retain low access latency. Moreover, the SRAMs are 
expensive. 

One way to ease this problem is to partition the matrix 
vertically as introduced in section 3. In this way, each PE only 
need a part of the vector value, the SRAM capacity 
requirement can be reduced by NPE times. However, at the 
same time, we need additional computation resources to handle 
the reduction operation in this method. 

2) AMD GPU Short Vector Utilization 
AMD GPUs are optimized for 128-bit memory access and 

vector arithmetic. In order to evaluate whether we should 
explicitly utilize this feature, we compare our original method 
with the 1x4 blocked CSR format based method. Table 4 
shows the performance and memory consumption while using 
the float4 short vector. From the results, we find that the 
performance is actually decreased when using the short vector. 
Due to the extremely low density of the matrix, it is very rare 
to have a float4 vector containing more than 1 non-zero 
elements. Hence, the times of memory fetch do not decrease 
notably, even if float4 short vector type is utilized. However, 
the total amount of data scale increased significantly.  

Table 4. CSR and 1x4 BCSR SpMV Comparisons 

Dataset Time(ms) Av size(MB)

CSR BCSR CSR BCSR

wiki-20051105 18.08 18.89 79 300

wiki-20060925 35.98 37.35 149 577

3) Scaling to Larger Datasets on both FPGA and GPU 
For FPGA, when scaling to larger datasets, the vertical 

partition method can be used to ease the memory limitation. 
But the scale can be only tens of times than the current one if 
SRAMs are not added to the board. Another way is to use 
DDRx SDRAM to store the vector values when the data keep 

increasing. In this case, the system will cost several cycles for 
the random access latency. The optimized memory hierarchy 
for this scenario is to use cache architecture as the CPU and 
GPU do. 

For GPU, when the data scales too large for the graphic 
memory to store, we can only store it in the system memory. 
One method is to split it into several tiles. The vector multiplies 
each tile either on CPU or on GPU. The preprocessing only 
takes place on GPU tiles and different tiles can be pre-
processed independently. Moreover, the scheduling system 
should be carefully designed so that the overhead of 
transferring matrix tiles can be hidden by the computation. This 
is achieved by the concurrent running of DMA data transfer 
and GPU kernel.  

4) Discussion about the Programming Model 
For the FPGA implementation, design effort is really a big 

problem. Nowadays, there are several frameworks for FPGA 
design those can ease the effort [15, 16]. We have proposed 
FPMR framework in [15], which is the MapReduce framework 
on FPGA. MapReduce framework on FPGA is a promising 
framework that can hide the synchronization and 
communication cost by dynamic processor scheduling. For 
SpMV design, the multiply operation can be thought as the 
Map operation, and the accumulate operation can be thought as 
the Reduce operation. Under this framework, it is easy to build 
a quick version of SpMV implementation. However, for SpMV, 
each task is really small. The dynamic processor scheduling 
will be the large portion of the cost. So, maybe the MapReduce 
framework fits for the matrix-vector multiply that is not that 
sparse. 

The OpenCL framework is a novel one that can take 
advantage of the parallel processing power of both CPUs and 
GPUs. It is a promising technology, especially addressing the 
issues of programming heterogeneous parallel systems. The 
current AMD OpenCL support has a few constraints related to 
memory allocation and control. For example, the memory 
space that can be used is relatively small compared to CAL/IL 
in the same graphic card. And the maximum size of a single 
buffer is no more than a quarter of the total graphic memory. 
Meanwhile, remote memory is not supported, which brings the 
difficulty in using typical Ping-Pong buffers. Despite these 
constraints, OpenCL greatly ease the programming effort 
compared to CAL/IL, and the drawback in performance is 
affordable. 

FPGAs and GPUs have different implementation features 
for SpMV application. For FPGA, more flexibility in the 
hardware makes the upgrade easy by adding more memory and 
duplicating more PEs. Of course, the memory hierarchy and 
processor scheduling scheme should be tuned according to the 
larger task. GPU has more powerful floating point computation 
ability, but the fixed hardware architecture makes the upgrade 
can be done only by program mapping. For the design efforts, 
GPU is easier to program than FPGA. Although many 
frameworks have been proposed, to be compliant with different 
platforms, the performance will still rely on the designer s 
effort. 
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VII. CONCLUSION

In this paper, we accelerated the SpMV computation on 
FPGA and AMD GPUs. In FPGA implementation, we design a 
pipeline processing element and perform the task partition to 
memory hierarchy mapping according to the matrix s scale. In 
GPU implementation, we carefully classified the problem into 
three sub-classes and designed efficient kernels. In the 
experiments, up to 29x and 30x speedup is obtained 
respectively. The major bottleneck of our current 
implementation is the vector accessing/gathering operation in 
SpMV, which requires random accesses to the device memory. 
For FPGA, several SRAMs have to be used to avoid latency in 
the cost of expensive memory. For GPU, the fixed memory 
hierarchy makes the cache hit rate generally low. In the future, 
we shall find methods to ease the latency by only using DDRx 
SDRAM to store the vector value on FPGA and increase the 
cache hit rate on GPU, which will further increase the overall 
performance.  
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