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Abstract—1 As the scale of computer clusters and supercom-
puters is getting larger, the problem of power consumption
and heat dissipation has become the biggest obstacle for the
ever growing need for computation. Designing platforms for
specific applications using the reconfigurable logic such as Field
Programmable Gate Arrays (FPGAs) or highly parallel proces-
sors such as Graphic Processing Units (GPUs) will dramatically
increase power efficiency. This is the concept of domain specific
computing. Combining the advantages of different platforms to
build a heterogeneous computing platform is the trend of domain
specific computing.

On the other hand, the research on brain networks plays
a vital role in understanding the connectivity patterns of the
human brain and disease-related alterations. Recent studies have
suggested a noninvasive way of modeling and analyzing the
human cortical networks with MRI by graph theory based
approaches. However, both the construction and analysis of
brain networks require tremendous computation. Currently, only
hundreds of nodes can be analyzed due to lack of computing
power. By increasing the number of nodes, the resolution of
cortical networks will be greatly enhanced, thus hopefully helps
the early diagnosis of brain diseases such as Alzheimer’s disease.
A well-designed computing platform is the key to this problem.
In this work, we inject the power of heterogeneous hardware
computing into the brain network research, to help the research
on the connectivity patterns of both normal and diseased brains.
Besides, one important outcome is an accelerated BLAS and
Graph algorithms package, which will provide insights into
domain specific computing to boarder audience in both bio-
medical and computer science domains.

I. INTRODUCTION

In parallel with the quick development of science and

technology, people’s demand for higher computation power

is insatiably expanding. In the field of computational biology,

researchers from IBM recently announced their work about

brain activity simulation of 1 billion spiking neurons and 10

trillion synapses [1]. Another example is the brain network re-

search presented in this work, which also demands tremendous

computation power.

To satisfy the demand, scientists and engineers build su-

percomputers with hundreds of thousands of cores. However,

when the scale of supercomputers is enlarged, the problem
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of power consumption and heat pollution is sharpening. For

instance, ”Dawn” the BlueGene/P supercomputer utilized for

IBM’s neuron simulation consumes 1.4MW to mimic a neural

network at roughly the same size as a cats brain. However its

speed is 100 times slower than the real brain [2], [1].

To satisfy such computation-hungry applications effectively,

people build specific computing platforms for specific appli-

cation domains. These platforms may have several kinds of

computation cores, including general purpose CPU, general

purpose GPU, and FPGAs. The table I shows the compar-

ison of CPUs, GPUs and FPGAs. Each technology has its

advantages and drawbacks. By combining the advantages of

each technology while avoiding drawbacks, we can build

heterogeneous hardware computing (HHC) platforms.

TABLE I
COMPARISON OF CPU, GPU AND FPGA

Peak 32/64bit GFlops Power(W) Design Effort

CPU(Core i7) 70/70 130 Easy

GPU(RV870) 560/2800 150 Middle

FPGA(Vertex-5) 36/140 5 Hard

The HHC has several advantages. Firstly, by utilizing the

reconfigurable hardware such as FPGA or highly parallel

processors such as GPGPUs, it can greatly improve the per-

formance space ratio and power efficiency. Secondly, instead

of spending heavy costs to solve each application separately, it

provides a framework or platform that addresses the needs for

a specific application domain. Hence, the designing efforts for

a particular application in the domain are greatly alleviated,

with little performance or efficiency lost.

These approaches are crucial in human brain network

research, which also requires huge amount of computation.

Recent studies [3], [4], [5] show that people can construct

a network model of the brains noninvasively by multi-modal

brain imaging techniques (e.g. structural, functional and diffu-

sion MRI). And these network models can be used to identify

brain diseases, such as the Alzheimer’s disease [6].

Currently, the imaging techniques is advanced enough to

give a high resolution voxel based image of the brain. Analyz-

ing the brain network in voxel basis will give us a much more

detailed view of the brain, which is important and necessary
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in the brain network research. However, both the construction

and analysis of voxel based brain networks require tremendous

computation power. Currently, the brain can be represented

at a resolution of 20k-100k voxels, each of which can be

considered as a single network node, which will result in

large scale networks. Analyzing such large scale networks

is quite time consuming. Moreover, this kind of analysis

need to be done on a large number of subjects in order to

conclude statistic results or patterns, which also adds to the

time complexity.

In this paper, we, for the first time, propose a heterogenous

hardware computing framework for brain network analysis,

i.e. to accelerate the analysis of large scale fMRI data. Under

this framework, we accelerate the construction and modularity

operations of voxel based brain networks. Our brain network

has around 38000 nodes.

The rest of this paper is organized as follows. Section II

presents some related work in both brain network research

and heterogenous hardware computing. Section III introduces

our computing platform for the application domain and our

implementations as well as our experimental results, including

construction and modularity operations. Section IV concludes

the paper and puts forward the future work.

II. RELATED WORK

Many work has been done to construct and analyze the

brain networks, and most of them focused on a coarse scale

(i.e., region level). For instance, several studies have utilized

a prior brain atlas to parcellate the brain into tens of brain

regions and then constructed region-based brain networks[7],

[8]. Other studies have used image voxels to build a partial

brain network at a fine scale[9]. Both methods lose some

detailed connectivity information.

In [10], brain network analysis is done on voxel basis,

which is much finer than previous region based analysis. When

partitioning the voxel-based brain network, some approximate

algorithms (such as random walk method) were used to avoid

complex eigenvectors computation of the correlation matrix.

However, tremendous computation is unavoidable when con-

ducting deeper analysis on voxel basis.

On the other hand, heterogenous and reconfigurable hard-

ware computing platform has become a new focus for efficient

computing in recent years. Much research work has been done

on utilizing the power of heterogenous and reconfigurable

platforms in various areas.

In [11] and [12], FPGAs and GPGPUs are used to accelerate

machine learning algorithms in order to accelerate web search

engines. [13] and [14] presented significant performance im-

provement for multiple sequence alignment (MSA) by using

GPGPU. MSA is a frequently used process in molecular

biology.

In [15], the use of heterogenous and reconfigurable com-

puting platform in the application domain of medical imaging

is discussed as a typical case. The author addressed several

widely used algorithms in X-ray and MRI data processing,

showing that FPGA and GPGPU can greatly improve the

performance. The report also showed that different algorithms

have different ’ideal’ chips - some are more suitable for

FPGAs while some are better with GPGPUs.

In our project, basic linear algebra and graph algorithms are

identified as performance bottlenecks. There is some recent

work addressing the issue of BLAS or graph algorithms

acceleration on FPGA or GPGPU. For example, Zhuo et

al used FPGA to accelerate Level 1, 2 and 3 BLAS [16],

or SpMV routine [17]. In [18], the author compared and

analyzed the performance and efficiency of CPU and FPGA

implementations of BLAS, based on IEEE standard floating

point format. In [19], a framework for linear algebra operators

implementation on GPU is proposed.

For graph algorithms, in [20], the author focused on the

mapping between reconfigurable circuit (such as FPGA) and

graph, and solved graph algorithms on that basis. In [21],

several fundamental graph algorithms are implemented on

GPU, such as breadth first search, single source shortest

path, and all-pairs shortest path. [22] presented some ways

to implement sparse matrix and graph algorithms on CUDA;

[23] presented a method to find shortest paths in graphs on

GPGPU.

All these work brings great help to our project. Our re-

search takes some steps further by focusing on the particular

application domain of brain network research. We design some

typical graph-based algorithms to best fit the domain’s features

such as the precision requirements and graph density, since

these factors will affect the data structure and memory access

patterns.

III. HARDWARE COMPUTING FRAMEWORK FOR BRAIN

NETWORK ANALYSIS

The computation strategy for brain network analysis can

be divided into two categories. One corresponds to end users

in hospitals. PCs equipped with dedicated hardware (such as

GPGPUs and FPGAs) are the best choice for their convenient

installation. These computers can quickly analyze patients’

brain network and give diagnostic suggestions based on an

expert system. The other category corresponds to research in-

stitutes, where it is possible to set up various high-performance

computers. Those computers with dedicated hardware may

group into clusters to form a heterogeneous hardware com-

puting platform. Its high efficiency and computation speed are

especially crucial for the analysis of the brain networks of

large number of subjects, on which the expert system is based.

The original data used the work of Brain Network analysis is

acquired from functional magnetic resonance imaging (fMRI),

from which a voxel-based brain network can be built. It is a

network that illustrates the connections of the brain. Each node

in the network represents a voxel, and each connection repre-

sents the correlation between the input signals of two voxels.

After the brain network is built, graph theory algorithms can be

applied to analyze the network, such as network hub detection,

modularity detection, small-world analysis, etc.

In relation to the construction and analysis of Brain Net-

works, we design a heterogeneous computing platform by



utilizing CPU, GPU and FPGA techniques as well as our

previous work of FPMR and its extension FPMR2 and FPMR3

[24]. The platform supports both single node and multiple

nodes systems. With such a heterogeneous platform, we can

considerably improve the performance of Brain Network anal-

ysis by redistributing the computing tasks to devices with the

most suitable computing resources and memory structure.

In the subsections below, a detailed description of our work

is presented by dividing the Brain Network analysis problem

into three fundamental tasks: network construction, all-pairs

shortest path and network modularity. The method of adapting

these tasks to heterogeneous platforms is introduced in each

subsection correspondingly, as well as some brief experimental

results of the specific implementations.

The computing platform in our experiments has a quad-core

Phenom II 956 CPU running at 3.4GHz, 8GB DDR3 memory,

a Radeon HD 5870 graphic card with RV870 core at 850MHz

and 1GB GDDR5 memory. Our GPU kernels are written in

ATI Intermediate Language (IL) [25].

A. Construction

By fMRI, a series of signal with length L is acquired for

each of the Nv voxels. For each pair of nodes (voxels) (vi, vj),
we obtain the Pearson’s correlation [26] between the series of

the pair, i.e.

r̂i,j =

∑

(vi − v̄i) (vj − v̄j)
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where vi denotes to the series of voxel i, v̄i is the average

of the series of that voxel, and all
∑

denotes to
∑L−1

t=0
, i.e.

summing along the whole time series.

This operation is very suitable for mass parallel processors

such as GPUs, since the computation of different pairs of

voxels can be fully parallelized.

Table II shows the comparison of running time for con-

structing brain networks. In the first test, we generate the full

correlation matrix on both CPU and GPU. The result shows

that construction of brain networks on GPU runs 26x faster

than that on a single core CPU. In the second test, we apply

a threshold rth = 0.75 on the correlation matrix so that only

those correlations exceeding rth are considered connections.

Our experiment shows that when applying the threshold for

binaryzation, the time of GPU accelerated implementation is

24x faster than the CPU implementation.

TABLE II
BRAIN NETWORKS CONSTRUCTION SPEED COMPARISON (IN SECONDS)

CPU 1-core RV870 Speedup

Full matrix 985.5 37.5 26x

Adjacency list 1021.9 42.0 24x

B. Modularity

The algorithm we choose for brain network modularity

is the eigenvector-based spectral partition method of Mark

Newman [27] for non-directed non-weighted networks. The

key of the algorithm is to calculate the eigenvalue of a

Modularity Matrix constructed from the adjacent matrix. The

partitioning is based on the eigenvector of the most positive

eigenvalue.

We use Power method to calculate the eigenvalue and

eigenvector. The Power method can be divided to several

basic matrix and vector additions and multiplications. So our

parallelization is focused on these basic operations. We use the

CSR (Compressed Sparse Row) format for the adjacent matrix

as it can be easily implemented on the AMD GPU platform.

Moreover, in each iterations of the power method, the adjacent

matrix, degree vector and would not be changed. As a result,

all the input data need only one time transfer.

The modularity computation costs a very long time and

divides the network in to thousands of communities. The CPU

version requires so much time that we cannot finish the full

division of the network. In response to that, we truncate the

calculation to the first 100 iterations and compare the CPU

results with GPU. Table III shows the speed comparison.

TABLE III
BRAIN NETWORKS MODULARITY SPEED COMPARISON (IN SECONDS)

CPU 1-core RV870 Speedup

First 100 iterations 74496.97 928.73 80x

Slowest iteration 2515.55 31.68 79x

Fastest iteration 3.78 0.29 13x

C. All-pairs Shortest Path

Dijkstra, Floyd-Warshell (FW) and Breadth-First Search

(BFS), are the most popular shortest path solvers used in appli-

cation and research. However, due to the limited computing

power of CPUs, when the input graph is huge, the running

time is intolerable.

After comparing the three algorithms, we choose BFS

for FPGA implementation. Although Dijkstra has the lowest

time complexity among the three algorithms, its sorting and

selecting operations and tight data correlation make parallel

processing difficult. BFS has high parallelism and hardware

mapping ability compared with Dijkstra. Its performance is

better than FW’s and lower than/similar to Dijkstra’s with

sparse graphs.

We design a universal PE to deal with a single source

node shortest path problem. A PE contains the following

elements: 1) A FIFO is used to play the part of a queue.

As an optimization, a register array is included in the FIFO

to avoid inserting nodes already in the queue, which can push

down the amount of nodes expanded during the processing.

2) A RAM is included to record shortest path (distance) from

the source node to each node. After the processing, data in the

RAM is directly sent to output. 3) An adder and a comparator

perform as the expanding unit. They calculate the new distance



from source node to a certain node, comparing the result with

current recorded distance, and updating it if needed. The graph

is organized in CSR format, stored in off-chip memory. A

carefully designed controller is in charge of managing data

streams between memory and all PEs.

We use a blocked Floyd-Warshall algorithm [28] for the

calculation of the all-pairs shortest path on GPUs. The core

of FW algorithm is the iterative calculation of the minimum

between every element of the Cost matrix and the sum of

elements on its column and row.

The idea of block FW is to divide the Cost matrix to several

sub matrices with the same size, and calculate them separately.

In the calculation of each sub matrices only a part of the

Cost matrix is needed, in which way the parallelization of the

iterations can be achieved. Besides, in the blocked algorithm,

only a part of the matrix is needed to store on the local memory

on GPU, which enables the possibility of the calculation of

very large matrices. As a result, the performance is greatly

improved by the GPU realization.

IV. CONCLUSION

In this work, a heterogenous computing platform is pro-

posed to accelerate the computation of brain networks’ con-

struction and analysis. In this application domain, we first

implemented two algorithms, e.g. network construction and

modularity analysis, and achieved huge improvement in effi-

ciency. It makes large-scale voxel-based brain network analysis

applicable on large number of subjects.

Based on our platform, we can further implement other key

algorithms for brain network research, and try to build the

model of high voxel-basis resolution for brain diseases diag-

nose. Furthermore, we will build two levels of platforms, one

for end users such as hospitals, which is capable for assisting

disease diagnose, while the other for research institutes, which

is capable for collecting and processing the data of a very large

number of subjects, trying to gain more insights of the human

brain.
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