This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Power Gating Aware Task Scheduling in MPSoC

Yu Wang, Member, IEEE, Jiang Xu, Member, IEEE, Yan Xu, Weichen Liu, Student Member, IEEE, and
Huazhong Yang, Senior Member, IEEE

Abstract—Shrinking the feature size allows more and better
functions on a single chip. However, it makes multiprocessor
system-on-chip (MPSoC) more susceptible to various reliability
threats. Power supply noise is a major reliability problem faced
by low power MPSoCs using power gating techniques. Pow-
ering on and off a processing unit in MPSoCs will induce large
power/ground (P/G) noise and can cause timing divergence and
even functional errors in surrounding processing units. Previous
work on resilient architectures mainly focused on power/thermal
management and neglected the important side-effect: P/G noise
induced by power gating. In this paper, for the first time, we
formulate a task scheduling problem with the consideration of
P/G noise based on our detailed P/G noise analysis platform
for MPSoC. Two efficient algorithms are proposed to reduce
noise protection penalty and improve MPSoC performance. Our
experiments show that both simulated annealing and heuristic al-
gorithms can achieve on average 25% performance improvement
together with up to 80 % noise protection penalty saving compared
with the conservative stop-go method for short tasks (shorter than
20 K clock cycles). For longer tasks up to 200 K clock cycles, the
performance improvement of our methods will become relatively
low. However, we can still achieve at least 35.2% noise protection
penalty saving. Furthermore, a lightweight online adjustment
strategy accompanying the offline scheduling method is proposed
to adapt to runtime variations and improve reliability.

Index Terms—Mixed integer linear programming (MILP), mul-
tiprocessor system-on-chip (MPSoC), power gating, power ground
(P/G) noise, task scheduling.

1. INTRODUCTION

ITH the continuous development of semiconductor
W technologies, reliable system design becomes signifi-
cantly more challenging as designers must contend with unre-
liable components and design processes. Although shrinking
the feature size results in the improvement of functionalities, a
multiprocessor system-on-chip (MPSoC) with smaller feature
sizes is more susceptible to various reliability threats, such as
silicon failures, noise effects, extreme process variation, design
errors, and etc. Reliability-aware resilient design considerations
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or even resilient architectures are needed to protect MPSoC
during the runtime.

Power supply noise is one of the most significant reliability
threats for MPSoCs with smaller feature sizes. Strict low power
requirements have led to the adoption of aggressive techniques
such as dynamic voltage and frequency scaling, clock gating,
and power gating [1], [2]. Although techniques like power
gating can dramatically reduce power consumption for idle
cores, they also exacerbate simultaneous switching noise (or
Al noise) on the power delivery network. At the same time,
when process technology advances, power consumption and
wire resistance have gone up while the supply voltage drops.
Thus the chip noise margin will go down. As a result, to design
resilient systems, design methodologies with power supply
noise management become necessary to fulfil the low power
and high reliability requirements of MPSoCs.

MPSoCs use multiple system performance within their power
budget. However, it is not likely or in some cases even impos-
sible that all of these PUs are active at the same time. Power
gating is a mature solution to eliminate the ever-increasing
leakage power consumption. When a new task is assigned to a
power-off PU or a PU finishes a task, the powering on/off will
cause large noise in the power delivery network and then prop-
agate to the PUs around the powering-on/off PU. For example,
powering on a PU in the corner of a low power 16-PU-MPSoC,
the peak noise level of this PU is over 30% of the supply
voltage, and the noise level in the adjacent PU can achieve
about 20% of the supply voltage (see Section III, Table I).
Voltage variations in P/G network will bring delay variations to
the internal circuits of affected PUs. Increased delay will lead to
performance degradation, while decreased delay may introduce
racing risk. Hence P/G noise will threaten the performance
and reliability of circuits. In the open literature, there are few
studies addressing such noise issues in MPSoCs. If a new task
is assigned to a power-off PU, the active PUs around it need
to be protected from the powering-on ATTACK; similarly, if a
PU finishes a task, the active PUs around it also needs to be
protected from the powering-off ATTACK. However, protection
is not free: extra time and power are needed to clock gate the
victim PUs and to wake up them when the attack PU is fully
turned on or off.

In this paper, we focus on the P/G noise aware power gating
strategies in MPSoCs: protecting MPSoCs that use the power
gating technique from P/G noise, while minimizing the protec-
tion penalty. Our contributions are summarized as follows.

1) A detailed P/G noise analysis platform for MPSoC is pro-
posed to model and study the P/G noise generation and
propagation. The noise induced by powering on/off PUs
in different positions, i.e., the spatial and temporal distribu-
tion of P/G noise induced by different PU behaviors, can be
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obtained from our platform. Meanwhile, according to the
safe voltage level derived from the performance require-
ment of standard cells, the distinct impact range of pow-
ering on/off each PU is defined.

2) For the first time, the P/G noise aware power gating
problem in MPSoC is formulated using mixed integer
linear programming (MILP), where MPSoC performance
and P/G noise protection overhead induced by power
gating are optimized. The objective function of the MILP
is to minimize: 1) the total execution time for all the tasks
and 2) the performance overhead for protecting the victims
from the power gating induced P/G noise (specifically, the
number of clock gating and power on/off operations).

3) Two alternative offline task scheduling techniques are pro-
posed based on our MPSoC P/G noise model considering
both spacial and temporal constraints. One is based on Sim-
ulated Annealing algorithms, marked as SA, to obtain op-
timized scheduling results; the other is a fast heuristic al-
gorithm, marked as HA, to achieve efficiency in terms of
running time. The experiment results show that SA and
HA can achieve up to 39.6% performance improvement
and reduce 80% overhead for noise protection compared
with the conventional stop-go method for tasks shorter than
20 K clock cycles. For longer tasks up to 200 K clock cy-
cles, the performance improvement will become relatively
lower. But we can still achieve at least 35.2% noise protec-
tion penalty saving. Our method can make a tradeoff be-
tween performance and noise protection overhead reduc-
tion. Study shows that a 20% relaxation in execution time
can reduce up to 40% noise protection penalty.

4) Since task execution time may vary during the real-time
operation, a lightweight online adjustment strategy is also
proposed to assist the offline scheduling to improve the
chip reliability.

The rest of this paper is organized as follows. Section II
reviews the related work. P/G noise analysis platform for
MPSoC is provided in Section III. In Section IV, we formu-
late the static scheduling problem in MPSoC using MILP.
Section V describes two efficient algorithms to improve the
speed of offline scheduling. Section VI describes the online
adjustment strategy to handle exceptions of realtime execution
time variations. Section VII shows the experimental results
and related analysis. Section VIII concludes this paper and
discusses possible future extensions.

II. RELATED WORK

A. Power/Ground (P/G) Noise Mitigation

Previous work on P/G noise mitigation for power gating tech-
niques mainly focused on circuit level techniques, such as sleep
transistor designs [3]-[6] , decoupling capacitor insertion [7],
and P/G noise aware floorplanning [1], [2], [8]. Optimum power
gating sleep transistor design and implementation are critical to
a successful low-power design. Various power-on current rush
control methods through the sleep transistor implementation to
reduce power supply voltage fluctuation were investigated in
[3]-[6]. A low power switched decoupling capacitor circuit was
proposed to suppress on-chip resonant supply noise [7]. Jiang

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[8] developed a power-gating driven floorplanner (PGFP) to as-
sist in designing of power gated chips. Mohamood [1] proposed
noise-direct, a design methodology for power integrity aware
floorplanning, using micro-architectural feedback to guide the
module placement. Healy [2] presented an improved design
methodology to combat the ever-aggravating high frequency
power supply noise (di/dt) in modern microprocessors based on
Mohamood’s work.

Recently, power gating sequence scheduling [9]-[11] in
a block or several blocks was proposed to tradeoff between
wake-up time and the P/G noise. The authors of [9] partition the
circuit given the constraint that the maximum current is drawn
from the power grid when the sleep transistor is switching,
and they propose a polynomial-time algorithm to minimize the
total wake-up time. In [10], Ramalingam et al. assume that
each gate can be turned on at any time subject to the fan-in
and current constraints and formulate the scheduling of sleep
transistors’ wake up times as a MILP problem. In [11], Jiang
and Marek-Sadowska address system-level power gating with
several gated blocks and optimize the wake up order of these
blocks in terms of noise.

These works mainly focused on block-level design tech-
niques, while in this paper, we investigate processor-level
power gating-aware scheduling strategies based on our detailed
P/G noise analysis platform for MPSoC, with the objective of
minimizing performance degradation caused by noise protec-
tion during powering on/off PUs. Furthermore, our approach
is based on circuit level simulations, which provides accurate
P/G noise estimations to guide the search towards the optimal
solutions.

B. Scheduling Problems

Many works have been done to address the scheduling prob-
lems with power/performance/thermal objectives [12]-[18].
However, P/G noise is different from thermal and energy, which
have accumulative effects. The noise level should be predicted
and victim circuits should be protected before the noise is in-
duced. Hence, the power gating aware scheduling problem with
the consideration of P/G noise should be carefully modeled and
solved offline based on an accurate P/G noise estimation, and
then assisted by a fast online adjustment method considering
the run-time variations of tasks’ execution times. Recent work
by Todri [19] considered the P/G noise induced by switching
current of active PUs to minimize the P/G noise level of
multi-core systems. In this work, we mainly focus on modeling
and management of the noise induced by powering-on/off a PU
when a task is assigned to or finishes on it.

III. ANALYSIS ON POWER GATING INDUCED P/G NOISE IN
MPSoC

In this section, our power gating induced P/G noise analysis
platform for MPSoC is introduced. The framework of the plat-
form is illustrated in Fig. 1. There are three key components in
the platform: 1) P/G network and package modeling of MPSoC;
2) MPSoC specification, such as PU number, layout, behavior,
etc.; and 3) technology parameters, such as technology node re-
lated physical parameters. We use HSpice to simulate the P/G
noise. We can obtain the noise levels induced by powering on/off
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TABLE I
PEAK NOISE OF DIFFERENT PUS WHEN PU1 IS ATTACKER. D IS THE DISTANCE OF PUS (FROM CENTER OF ONE PU TO CENTER OF ANOTHER PU); N IS
THE NOISE VALUE OF EACH PU

D 0 1 V2 2 Vi | VB8] 3 VIO [ Vi3 | VI8
N(mv) 243 149 112 106 97 91 97 93 90 89
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Fig. 1. Power gating induced P/G noise analysis platform. pacitance load is used to imitate the core logic. A decap is connected to the
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Fig. 2. P/G network architecture of MPSoC.

PUs in different positions and time instants, i.e., the spatial and
temporal distribution of P/G noise induced by different PU be-
haviors. According to the safe voltage level derived from the
performance requirement of standard cells, we obtain the im-
pact range of a PU, which is defined as the set of neighboring
PUs whose voltage level can be affected by power gating on it.

A. P/G Network Modeling of MPSoC

As shown in Fig. 2, the MPSoC chip is composed of PUs
organized in 2-D-mesh topology.

1) P/G Network Model: As mesh-based power distribution
networks design is the commonly accepted design approach to
handle current variations [20] and meshes are the accepted way
of designing power distribution networks in modern design [21],
we assume the power rail distribution as mesh-based power/
ground grid here. The most common way to distribute power in

[ signal pads

Fig. 4. On-chip P/G grids and I/O pads.

a gigascale integration (GSI) chip is to distribute it through an
on-chip grid made of orthogonal segments (see Fig. 2) [22]. The
horizontal and vertical segments of a grid are routed at different
metal levels (e.g., at the layers of Metal 5 and Metal 6) and are
connected through vias at the crossing points. The number of
segments in the P/G grid is usually large. Neglecting the via re-
sistance, each node of the power distribution grid is connected to
the four neighboring nodes. A wire between two nodes is simply
modeled as a lumped resistance s, and an inductance Lgeg
(see Fig. 3). Cy denotes the capacitance per unit area between a
power grid node and the adjacent ground grid node (including
both the intentionally added on-chip decaps and the equivalent
capacitance between the wires at different metal levels). Cp, is
the load capacitance. /scg is the length of the segments in hori-
zontal and vertical directions. W, and T, are the width and
thickness of the segments, respectively. We set the wire seg-
ment dimensions above, and the resistance-inductance-capaci-
tance (RLC) parameters are calculated through the PTM inter-
connect model [23]. Both [24] and our simulation results show
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Fig. 5. Package model with package L and off-chip decoupling capacitance.

that on-die inductance has little impact to P/G noise. Hence the
on-chip inductance L is neglected during the simulation.

2) Package Model: In flip-chip package technology, the
package input/output (I/O) pads are connected to the chip I/O
pads through metal bumps distributed across the chip surface.

The flip-chip package is more expensive than a wire-bond
package. However, it has smaller I/O parasitics [25]. The
distributed pads also help increase total I/O count and con-
sequently lower the P/G noise. Power distribution for a high
performance microprocessor requires many pads. Two-thirds of
the total pads are used for power distribution [26] in our model.
These power and ground pads are spread throughout the chip
surface, as shown in Fig. 4.

In our package model, as Fig. 5 shows, the pad and bump
are modeled as a package resistance (R_vdd_pk N and
R_vss_pk_N) and a package inductance (L_vdd_pk N and
L_vss_pk_N). Besides, an off-chip decoupling capacitance
(C_dcp_off) is added between the virtual power node and the
virtual ground node of each core. The PCB board is modeled as
a lumped resistance (R_pcb_vdd/vss) and inductance network
(L_pcb_vdd/vss) here. It should be pointed out that the values
of package resistance and package inductance are in direct
proportion to the distance between the current pad and the
center pad of the chip, which is in accord with the fact that the
power supply usually locates in the center of the chip (e.g.,
our MPSoC). The package P/G network is included in the chip
package and PCB beneath package in Fig. 5. We use this radial
network as a simplified package model.

B. Power Gating Induced P/G Noise Estimation in MPSoC

The power on and off of a PU will cause large transient cur-
rent demands, which will induce large voltage deviations in the
P/G grids. Based on the P/G model in the above subsection, the
noise induced by powering-on/off PUs in different locations in
MPSoC is evaluated. Assuming all the PUs induce the same

PCB 1
(chip pins to voltage source)

(die bumps to chip pins)

0.8

Vsafe

Vdd'vss V)

A PU out of the impact range of an attacker i
—A victim j
—An attacker i

Time (s)

Fig. 6. Conceptual illustration of P/G noise temporal influence in MPSoC.
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Fig. 7. Delay variance of standard cells considering P/G noise. We use 45 nm
standard cell from [28].

supply current and have identical capacitance density, an in-
verter is put between a power grid node and its adjacent ground
grid node to represent the PU switching activity. So there are
as many inverters as the P/G nodes in our models. For example,
for one PU, we use 43 560 inverters to mimic its behavior. The
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Fig. 8. Noise level and impact range of power gating induced P/G noise in 16-PU-MPSoC.

inverter size is chosen according to the average power consump-
tion requirement for typical PUs. For different MPSoCs, the av-
erage power of each PU is about 30 mW, and the peak power
of each PU is about 290 mW. We get these two values based on
ARMI11 [27] by scaling down the process parameters. For ex-
ample, the worst-case noise by a PU switching can be simulated
as all inverters of the switching PU charging and the others dis-
charged, because the discharged inverters cannot help to reduce
power/ground noise as decoupling capacitance. In the simula-
tion, the PTM 45 nm bulk CMOS model [23] is used for transis-
tors (Vgq = 0.8 V). The standard cell library is from the Nan-
gate Open Cell Library [28]. The clock frequency is set to 1
GHz. We assume that 15% of the total chip area is occupied by
decoupling capacitors.

1) P/G Noise Generation and Propagation: A pow-
ering-on/off PU is defined as an attacker. A PU, which carries
an active task, is defined as an active PU. An active PU within
the impact range of an attacker is defined as a victim. (Please
note that some power-on PUs could be idle, and they are not
victims in our definition.)

The temporal influence of P/G noise in MPSoC is illustrated
in Fig. 6. We obtain the impact of P/G noise on standard logic
cells and D flip-flop through simulation. Safe voltage levels are
set for different cells to satisfy the performance requirement,
and then a safe voltage level for a PU can be calculated as Vuse.

T i1 is the minimum time required for the voltage differ-
ence between V4 and V4 node pairs of an attacker ¢ to be sta-
bilized above the safe voltage level V,¢.. The measurement of

T3,i110 1s started at the beginning of the switching event. T:gfe is
the earliest time instance after which V4 — Vs of a victim 7 is
stabilized above Vj,t.. These parameters are extracted from our
P/G network simulation.

2) Safe Voltage Level for PU (Vzato): We use a variable to get
the relationship between delay variation and the V4 variation.

We use standard logic cells, including BUF, AND2, NAND2, OR2,

NOR2, XOR2, etc., in the standard cell library. The noise voltage
source plus the ideal V;;; connects between nodes V4 and Vi,
of each standard cell. The noise voltage source is a damped si-
nusoidal source that is the product of a dying exponential with
a sine wave. The damped sinusoidal noise is analytical, and it
can approximately imitate the P/G noise. Fig. 7 shows the tran-
sition delay variation of the standard cells under different P/G
noise levels. Compared with ideal V4, in most cases, the supply
voltage variation makes the delay increase (we just show the
increased delay in Fig. 7); and in several cases, it makes the
delay decrease. Increased delay will lead to performance degra-
dation, while decreased delay may introduce racing risk. Hence
P/G noise will threaten the performance or reliability of circuits.
Proceeding from most cases shown in Fig. 7, if the delay relax-
ation is set to 20%), i.e., the circuit will be safe under 20% delay
variation, the noise safe voltage should be 100 mV.

3) Example for MPSoC With 4 x 4 PUs: We illustrate the
benefit of the noise aware processor level power gating strategy
by taking a MPSoC with 4 x 4 PUs as an example.

First, we will introduce the conservative strategy—stop-go
method. During powering on or off a PU, the stop-go strategy
protects all the other active PUs. The stop-go algorithm is sim-
pler and safe, but it is conservative according to our P/G noise
model.

Second, the peak P/G noise levels of PUs induced by attackers
located at different locations are shown in Fig. 8. Different im-
pact areas can be observed: for PU1, at most 5 PUs need protec-
tion; for PU2, at most 9 PUs need protection; for PU4, all the
other PUs need protection. Rimpact(p) is defined as the set of
the victims of an attacker p.

Fig. 9 shows the voltage difference between Vyq/Vs grid
node pair when PU1 is the attacker. Peak noise of each PU is
given in Table I. In Table I, D represents distance from the ac-
tive PU (PU1) to the other PUs and the side length of a single
PU is set to be 1. IV represents peak noise of PUs.
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Fig. 9. Waveforms of voltage difference between vdd/vss grid node pair when
PU1 is charging and others are already discharged.

To assign a new task, the conservative strategy—stop-go
method will protect all the active PUs (clock gating them)
when any PU is turning on. However, based on our P/G noise
model, when the new task is assigned to different PUs, there
exist some PUs which do not need protection, e.g., if the new
task is assigned to PU1, 10 PUs within the always safe range
do not require protection, and at most 5 PUs will need to be
clock gated. Hence we can improve the MPSoC performance
and reduce the noise protection penalty by carefully allocating
the tasks onto PUs with different impact ranges.

IV. POWER GATING AWARE TASK ASSIGNMENT AND
SCHEDULING IN MPSoC

A. Task and System Model

The task model is represented by a directed acyclic graph
(DAG), in which nodes represent tasks and directed edges in-
dicate data dependencies between tasks. Let Task be the set of
tasks, and ¢(%) be the execution time of task ¢ € Task.

A homogeneous MPSoC is a set of PUs, PU = {p|p €
[1,2,...,N—1, N]},in which N is the total number of PUs. If
we assign a task 7 to PU p, the powering-on/off noise when the
task begins/finishes will attack the PUs in Rippact(p), which is
provided through our P/G model. The noise protection method
is to clock gate the victim PUs and to wake up them when the
attacker is fully turned on or off. P A(p) is defined as the set of
potential attackers of PU p, which can be easily derived from
the impact ranges of the on-chip PUs.

When an attacker powers on/off, we define the noise protec-
tion penalty of a victim PU to be T'1,, = Tietticon + Telkoff +
Teikon and Tlog = Tsettlcof + Teikoff + Telkon, respectively,
where Tejko and Tixon are the time needed to clock gate a PU
and wake it up from the clock gating state, and Tettleon and
Tiettleor are the settle time for a PU to power on/off.

B. MILP Formulation for Static P/G Noise Aware Power
Gating Strategy

1) Problem Definition: Given a homogeneous MPSoC with
N PUs, and a set of real-time tasks Task, determine a static
assignment of tasks to PUs, such that all task constraints and
deadlines are met, the MPSoC performance is optimized and
the penalty for safeguarding the victim PUs is minimized.
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We present the first MILP formulation for this problem. The
objective function of our MILP has two parts: 1) the total execu-
tion time T¢,,q for all the tasks and 2) the performance overhead
for protecting the victims from the power gating induced P/G
noise: Y ¢ prr; jerask (SPa(%, ) X Tlon+afpa(i, j) X Tlog).

The variables used in the MILP are defined in Table II. Sev-
eral key constraints making our model different from other tech-
niques are listed as follows.

1) Special timing constraints considering protection and
settling times. Fig. 10 shows the extreme conditions of
two tasks’ start and finish time no matter to which PUs
they are assigned. These extreme conditions help us to
determine the timing constraints.

For the first case in Fig. 10 1): task 7 starts (powering
on a PU) right before task j’s finish time (turning off
a PU). ts(4) and tf(j) should satisfy the timing con-
straints: Vi,7 € Task,i # j : ts(i) < tf(j) — TIg
so that the victim protection procedure for these two
attack operation will not conflict. T, are defined as:
TIL = Tsottlcon + Tscttlcoff + Tclkoff + Tclkon-
Similarly, for the case in Fig. 10 2): task ¢ finishes right
before task j’s finish time: tf(i) < tf(j) — Tlog; for
Fig. 10 3): task ¢ starts right before task j’s start time:
ts(i) < ts(j) — Tlop; for Fig. 10 4): task 7 finishes right
before task j s start: ¢ f (i) < ts(j) —TIs.Here, TIs =
Teott + Teikon- These constraints are introduced in the
MILP formulation to guarantee the tasks are assigned to
PUs one by one without overlap.

2) The following constraints on «s(4, j) are used to model
the case where task 7 starts during the execution of task
j

Vi, j € Task,i # j,Vp € PU :

tf(j) = TIp > ts(i) + (as(i, §) — 1) Teons (1

ts(J) + Tlon < ts(i) + (1 — @s(%, 7)) Teons 2)

2 2 as(i,j) + =(i,p) + =(4,p) (©)

tf(.]) + TIS - p(Z,_]) X Tcons S ts(l) + as(ivj)Tcons (4)

where the first two inequations are used to make sure the
start time of task 7 is between the start and end time of
task 7; the third inequation is to make sure task ¢, j are
not executed on the same PU, when as(i, j) is true; the
fourth is to make sure if ¢+ does not start during j and if 5
starts earlier than ¢, the starting time of task ¢ should be
larger than the finishing time of task j; Tt 1S a constant
larger than the worst case execution time to finish all the
tasks. The timing constraints for « f (4, j) are similar and
omitted here.

3) Execution time ¢(¢) and finishing time ¢f(¢) for each
task 2:

Vi, j € Task,Vp,q € PU :
t(ﬁ) = tori(i) + Tsettleon + Tsettleoff
+ 3 (aspa(j i) X Tt afpa(j, i) x Tlg)  (5)

#(i) + ts(3) < tF(i) < (i) + ts(d)

+ numTasks x T, (6)
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Fig. 10. Four conditions of two tasks’ starting and finishing time.

TABLE II
VARIABLES USED IN THE MILP

x(i,p) set of 0-1 variables s.t. x(i, p) = 1 iff Task i is assigned to PU p
ts(i) Execution start time for Task i
1f(i) Execution finish time for Task i
1(i) Execution time for Task i
Tona Finish time for all the Tasks
p(i,j) set of 0-1 variables, s.t. p(i,j) = 1 iff ts(i) <ts(j)
e(i, J) set of 0-1 variables, s.t. e(i,j) = 1 iff 1£(i) > 1f(})
as(i, j) set of 0-1 variables, s.t. as(i, j) = 1 iff 1s(j) < 1s(i) <1f(j)
of(i,)) set of 0-1 variables, s.t. af(i, j) = 1 iff 1s(j) <1f(i) <tf(j)
aspal(i, j) set of 0-1 variables
s.t. aspa(i, j) = 1 iff assigning Task i ATTACKs Task j
= as(i, ) X ¥ perus(X(J, P) X Lgeragp) X(i,9))
ofpal(i,j) set of 0-1 variables
s.t. afpa(i,j) =1 iff finishing Task i ATTACKs Task j
= af(i, j) X X perus (¥, P) X Lyerap) *(i:9))

where to,i(7) is the predicted execution time of task i;
numTasks x Ty, is to give each task a slack so that

each task can be turned off one by one.
The left constraints, including precedence constraints of task
pairs, task execution constraints, task deadline constraints, lin-
earization constraints (for aspa(s, j) and afpa(i, 7)) are as fol-

lows.

1) Every task ¢ is assigned to exactly one PU

ViETask:ZxL ) =1. @)
peEPU
2) Deadlines for each task 2
Vi € Task : tf(i) < D(i). ®)
3) Precedence for each task pairs
Vi,j € Task,i # 7 :
p(i, 7) +p(j, i) = Le(i,j) +e(j. i) = 1 )
ts(i) + Tlon < ts(j) + (1 = p(i,5)) Teons (10
tf(z) + Tlog < ff(J) + (1 - e(z'uj))Tcons (11)
ts(i) x dep(i, j) > t£(j) + T1s (12)

where dep(4, j) is a Boolean constant that dep(z, j) = 1
represents task ¢ depends on task 7 in the task graph.
4) Extra Precedence constraints for tasks on the same

cores:

Vi,j € Task,i # j,Vp € PU :

tf(i)+TIs <

(2 - x(zlp) - x(j7p))TCOIlS + ts(])

+ (1= p(%, 7)) Teons (13)
tf(i) + Tls < (2 — z(i,p) — 2(4,P)) Teons + t5(4)
+ (1 —e(i, 7)) Lcons- (14)

SA Algorithm for P/G noise aware Task Scheduling
Input: the Task set Task, execution time of each task #(i);

the PU set PU and the impact relation between PUs.
Output: the assignment of the tasks to PUs and the end time.

1 Temp=Initial Temperature; Sol=Initial random solution;
MinResult=Evaluate(Sol); MinSol=Sol;
t=0; Iteration=0;
do
Sol’= Neighbor(Sol);
NewResult=Evaluate(Sol’);
if NewResult<=MinResult
MinResult=NewResult; MinSol=Sol; Sol=Sol’;
else if exp((MinResult-NewResult)/ Temp)>Random(0,1)
Sol=Sol’;
11 t++; Temp=A/(1+B*t); Iteration++;
12 while Temp>=1 && Iteration<MaxIteration;

O 0 9 AN L AW

—
(=]

Fig. 11. Simulated annealing algorithm for P/G noise aware task scheduling.

5) Linearization constraints for aspa(i, ) and afpa(i, j)
follows the linearization constraints for C = B x A: if
the upper bound of B is M, and A is Boolean variable,
Ccanberelaxedas: 0 < C < B; C < M x A;
C>B—-Mx(1-A4).

V. EFFICIENT ALGORITHMS FOR STATIC POWER GATING
AWARE TASK SCHEDULING

The MILP formulation serves as a theoretical starting point
of heuristic algorithms. However, it cannot be used to efficiently
solve large problem instances, especially when the problem is
NP-hard [29]. In this section, we propose a stochastic algorithm
based on Simulated Annealing (SA) and an alternative Heuristic
algorithm (HA) to address the problem of static task scheduling
with power gating awareness.

A. SA Algorithm

Fig. 11 shows the pseudo-code for the simulated annealing
algorithm. In the initialization, an initial solution is randomly
generated (line 1) and evaluated (line 2), that is, each task is
randomly assigned to a PU, and all the tasks on the same PUs
are ordered by the topological order. Then, the temperature is
set to an initial temperature and the algorithm begins annealing
(line 3).

In each annealing cycle, a new neighbor solution is generated
from the previous best solution. If the new solution is better
than the previous one, we will accept it. But on the contrary,
if the new solution is worse, we will accept it with the prob-
ability exp((MinResult-NewResult)/Temp), otherwise we drop
the neighbor solution and start the next cycle from the best so-
lution so far. The annealing process iterates along with the tem-
perature decreases until the temperature becomes smaller than
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Power Gating induced P/G noise aware Task Assigning and Scheduling
Input: the Task set Task, execution time of each task #(i); the PU set PU and
the impact relation between PUs.

Output: the task assignment and the end time.

1 Abstract the task set into a DAG;

2 Topological Ordering;

3 Calculate the theoretic static timing information of each task;
4 Decide the critical tasks;

5 Time node t=0;
6

7

8

9

do
update RS (Ready Set), CS (Critical Set);
if there exists a task 7; finish at time node t
power off the PU of T};

10 for each task in CS do
11 assign the task to an off PU which has minimum num of Victims;
12 end
13 for each non-critical task 7;in RS do
14 if require time of 7; is much bigger than t
15 continue;
16 elseif require time of 7} is near ¢
17 if there exists an off PU with minimum num of Victims
18 assign 7; to this PU
19 elseif 7; can be treated as critical task
20 put 7; into CS
21 end

22 t++;
23 while there exists an un-finished task

Fig. 12. Fast heuristic algorithm for P/G noise aware task scheduling.

1 or the iteration count achieves the limit. The annealing cycle
is shown from line 4 to 12.

The neighbor function (line5) plays a key role in the SA algo-
rithm: given a valid assignment, another valid assignment needs
to be generated by the neighbor function. In the neighbor func-
tion, first, a PU p is randomly chosen, one task from the task
queue of PU p is selected, and then moved to another random
PU gq. Based on the task graph and the timing constraints, we
choose the earliest start time for the moved task on PU q. This
neighbor function ensures all the timing constraints are satisfied.

1) Complexity Analysis: For each cycle, we need to evaluate
the current solution, the running time complexity of this step is
O(Ntask X Tsum ) and the cycle count is maximum number of the
temperature nodes N, which can be controlled by the user. So
the worst case complexity of SA algorithm is O(Niagk X Tsum X
Niter), where Ny, is the number of tasks and T,y is the sum
of expected execution time of all tasks.

B. Heuristic Algorithm

A heuristic algorithm is further proposed for offline power
gating aware task scheduling, as shown in Fig. 12.

In the initialization step (line1-5), we first abstract the task
set into a Directed Acyclic Graph (DAG). Every node in the
graph represents a task and a directed edge (4, j) represents task
7 depends on task %, which means task 7 must start after the
finish time of task 7. Then all the tasks in the DAG are ordered
into a topological order. Based on the DAG and the topological
order, we calculate the earliest start time of each task and the
total execution time of all the tasks, further more the require
time of each task can also be calculated. Thus, we can get the
slack time of each task and decide the critical tasks whose slack
time is 0.

In the task assignment loop (line6-23), we keep two sets
ready set (RS) and critical set (CS). The RS consists of all tasks
whose precedent tasks have already been finished. The CS con-
tains the tasks whose slack time at time ¢ is 0. We move the crit-
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ical tasks from RS into CS. The procedure iterates as the time
advanced until all the tasks are finished.

At the beginning of each iteration, if some tasks finish at
this time instance, check the timing constraints and tentatively
power off the PUs with the finished tasks (line 8). If a PU can
not be powered off according to the timing constraints, it will be
changed to the idle state until it can be powered off or another
task is assigned to it. For each task in CS, if there exist some
spare PUs satisfying the timing constraints, then we assign it to
the PU who has minimum number of victim PUs (line 10-12).
For each noncritical task in RS, if its require time is still far away
from current time instance ¢, we will not assign it so that spare
PUs are kept for possible upcoming critical tasks. If the require
time of the noncritical task is near the current time instance,
we investigate the PUs with minimum number of victims: if the
victim number is small, then we assign the task, otherwise we
don’t. If the require time of a task in RS is approaching current
time instance ¢, this task becomes a critical one, then it will be
assigned following the rules of critical tasks. The complexity of
HA is O(Niask)-

1) Complexity Analysis: For each cycle, we will consider all
the tasks in CS and RS whether they should be assigned, and the
cycle count is smaller than 7},,,,,. So the worst case complexity
of HA algorithm is O(Niask X Tsum)-

VI. LIGHTWEIGHT ON-LINE TASKS SCHEDULING METHODS

Since the actual execution time of a task at run-time may vary
from its predicted value at design time, the static task scheduling
may not be applicable for realtime implementation. Increased
and decreased execution time of an attacker will cause potential
reliability threaten to its victims. Here, a lightweight online ad-
justment strategy is provided to ensure the reliability of MPSoC.

A task execution time at runtime may vary from the predicted
value in the following two ways—increasing or decreasing.

1) If the online monitors find the real execution time of task
1 on PU p to be longer than the predicted one, all the
PUs on chip will be protected at the predicted power-off
time of PU (¢f(7)) until this PU is really powered off
when task 7 is finished (the real finish time is denoted as
t frea1(?)). The original static task scheduling (task start
time and protection time) for tasks after ¢ f(¢) should be
postponed by ¢ frea1(i) — tf(2).

2) If the real execution time of task ¢ on PU p is shorter
than the predicted one, the online adjustment strategy
conservatively keeps PU p in the idle state and power it
off at the predicted power off time ¢f(7). The original
static task scheduling afterwards will not be influenced.

VII. IMPLEMENTATION AND SIMULATION RESULTS

A. Implementation and Experiment Setup

The P/G noise analysis platform is built up with Hspice and C.
The MILP model is solved by SCIP [30]. SA and HA algorithms
are implemented with C. The experiments are performed on a
server with 2 Intel Core2 Xeon and 8 GB memory.

1) P/G Noise Parameters for MPSoC: The P/G network pa-
rameters are extracted from PTM interconnect model [23]. For
different MPSoCs, the average power consumption of a single
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Fig. 13. Four task structures in our experiments: 1) TASK y: Tasks with No Correlation; 2) TASK sp: several Sequential tasks in Parallel; 3) TASK 7 :

Tree-connected Tasks; 4) TASK ¢ Fully Correlated tasks.

PU is kept as a constant around 30 mW, and the area of a single
PU is set as a constant 660 pm x 660 pm, which also comes from
ARMI11 by scaling down the process parameters. Based on the
performance results of standard logic cells and D flip-flops with
different P/G noise, the noise toleration of V3 —V, is set as 100
mV, hence Vg, defined in Section II-B is set to 700 mV. Then
the corresponding impact range Rimpact(p) of each attacker p
is derived for 4 x 4 to 8 x 8 PU mesh MPSoCs. Tt for both
powering on and off are set to 200 clock cycles. We choose this
particular value based on [31]. As mentioned in [31], the power
gating technique that reduces the wake-up time to shorter than
1 ps has been developed and the wake-up time of a 2 M gates
circuit is around 300 ns under certain conditions. We can calcu-
late that the scale of a single PU in our model is about 0.77 M
gates. The frequency of our system is 1 GHz. So it is acceptable
to choose 200 clock cycles as Tyettle- The Teikon and Tepkof 1S
set to be 100 clock cycles for the time penalty to protect/resume
the data and clock-on/off the victim PU according to Tett1e. All
the time units in the results are measured by clock cycles.

2) Task Benchmarks for MPSoC: Four task structures are
generated as test benchmarks: (1) TASK y¢: Tasks with No
Correlation; 2) TASK gp: several Sequential tasks in Parallel;
3) TASKpr: Tree-connected Tasks; 4) TASK p¢: Fully Corre-
lated tasks (a connected DAG with multiple inputs and multiple
outputs).

In each task structure, we generate test cases with different
number of tasks. We set the predicted execution time of a task
randomly between 1 to 20000 clock cycles for typical condi-
tions. At the end of Section VII-B2) we will also discuss the con-
ditions that the task length becomes longer: up to 200 K clock
cycles. Fig. 13 illustrates the examples of the four types of task
structures with the number of tasks equals to 40.

TABLE III
MILP AND SA FOR TASK x ON 4 X 4 MPSoC. RUNTIME OF MILP 1s
LIMITED 10 10 hr, WHILE RUNTIME OF SA 1S LIMITED TO 20 min

Task MILP SA Stop-go
# Tend CP/PT Tond CP/PT Tond CP/PT
6 20040 2/12 20040 2/12 23110 | 30/12
3 15340 6/16 15340 | 16/16 | 20940 | 56/16
20080 | 32/20 | 19610 | 30/18 | 26810 | 90/20
20720 | 50/24 | 19860 | 44/22 | 27060 | 132/24

B. Results For Power Gating Aware Task Scheduling

1) Comparison of MILP, SA, and Stop-Go On Task Sets With
Small Number of Tasks: According to the four task structures,
TASK y¢ is the hardest scheduling benchmark with the largest
solution space. We first evaluate some simple examples to com-
pare the MILP/SA/stop-go methods shown in Table III. CP and
PT denote the number of clock gating and power on/off opera-
tions, respectively. Both MILP and SA method achieve impres-
sive improvement on end-to-end delay 7,4 compared with the
stop-go method: from 10% to 30% and this improvement will
be greater if the task number becomes larger.

The MILP and SA approaches obtain nearly the same results
for six and eight tasks. However, for 10 and 12 tasks, SA method
gets better results because in SA and HA algorithms, new tasks
are allowed to run continuously on a PU if the previous task
is just finished. While in MILP solution, in consideration of the
complexity, our MILP model assumes that: a PU should be pow-
ering off when it finishes a task and can’t receive a new one until
it is powering on again. Hence, powering-on/off times (PT) of
SA is smaller than PT of MILP. We tried task number larger than
12, the MILP model needs to run hours to get a sub-optimal re-
sult, hence only SA and HA are evaluated for larger problem
instances.
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TABLE IV
SA/HA/STOP-GO METHODS ON 40 TASK SCHEDULING ON4 X 4 MPSOC

Task Task SA HA Stop-go
Structure length Tond CP/PT | Runtime Tond CP/PT | Runtime Tond CP/PT | Runtime
NC variable | 39850 | 200/42 30min 49380 | 326/50 3s 65940 | 960/80 4s
equal 42500 | 178/38 21min 45100 | 316/52 3s 61200 | 536/80 4s
SP variable | 74920 | 104/60 45min 79620 | 116/66 4s 101240 | 434/80 9s
equal 63130 | 90/42 37min 65200 | 126/60 4s 80800 280/80 6s
TT variable | 66140 | 160/54 45min 70630 | 270/62 Ss 88470 | 652/80 7s
equal 62210 | 122/38 40min 63500 | 204/44 4s 80800 | 428/80 6s
FC variable | 77980 | 66/60 50min 81040 88/62 Ss 104380 | 368/80 9s
equal 61400 | 68/38 41min 65000 | 106/54 S5s 80800 | 280/80 6s
HA, however this difference will be smaller if the PU number
g X 10° e becomes larger except TASK y¢.
TAzKNCﬁA Table VI shows the results for TASKyc and TASK pc
8 % T ASKNC/S A with different task numbers on 16/64-PU-MPSoC. In this
— - sP .
7 7 e TASKgpHA table, more PUs lead to smaller T¢,q, especially when the
s E :: —oTASK/SA task number becomes larger. For rmT ASK yc with larger
-é 6 —TASKy/HA solution space, Te.,q on 64-PU-MPSoC is less than half of that
C —o-TASKgc/SA on 16-PU-MPSoC. For TASK ¢ in which tasks are highl
5 ghly
2 ——TASKgc/HA correlated, the improvement is very limited even when the task
ko number increases. CP decreases with increased PU number,
3 since there are more safe assignment choices: more PUs are not
attacked by the powering-on/off of a single PU. On the contrary,
27 56 6x6 X7 8x8 CP for stop-go method will increase since the influenced PU

MPSoC mesh size

Fig. 14. Four kinds of tasks with fixed task number on different MPSoCs.

2) SA/HA/Stop-Go Results Comparison: Table IV shows
SA/HA/stop-go results for 40 tasks of 4 task structures on 4 x 4
MPSoC. Both SA and HA methods achieve impressive Typnq
improvement compared with the stop-go method: from 21.9%
to 39.6% and from 19.3% to 26.4%, respectively. CP of SA is
up to 70% less than that of stop-go method. Meanwhile, SA
gets better results than HA. PT and CP of SA are about 17.3%
and 36.3% less than those of HA, respectively. And Tenq of
SA is about 6% better than that of HA. However, SA needs to
run nearly an hour, while HA needs only several seconds. So
designers can choose different algorithms to tradeoff between
MPSoC performance and algorithm running time. We also use
tasks with identical (equal length) and different execution times
(variable lengths). For all the task structures, equal-length tasks
will leads to smaller CP than variable-length tasks, because
tasks with different lengths have higher possibility to intersect
on the time domain.

In Fig. 14, more PUs will lead to smaller 7T5,,q but the trends
are different for different task structures. For TASK pc and
TASKgp, in which tasks are highly correlated, the improve-
ment is limited. For TASK v with a larger solution space,
Tena on 16-PU-MPSoC to 49-PU-MPSoC decreases quickly,
but T,,,4 on 64-PU-MPSoC is close to that on 49-PU-MPSoC.
This is because the task number is not large enough to exert the
advantage of a larger PU number. For TASK 7, the decreasing
rate is in the middle, since in the root level there are few par-
allel tasks, when the tree becomes deeper, there will be more
parallel tasks to fully utilize the increased PU number. Fig. 14
also shows that 7,4 improvement of SA is larger than that of

number increases with increasing total PU number.

For longer tasks up to 200 K cycles, Table V shows
SA/HA/stop-go results for 40 tasks of NC task structure on
4 x 4 MPSoC. In Table V, as the execution time of a single
task becomes longer, the T,,,q improvement of both SA and
HA methods compared with the stop-go method goes lower:
from 28.6% to 2.04% and from 22.8% to 1.32%, respectively.
That is because the efficiency of SA and HA methods is highly
related to the number of tasks. Large number of tasks will
highlight the impact of SA and HA methods. However, the
number of tasks is set to be a constant 40 here. Meanwhile
the clock gating penalty, about 200 cycles, will be negligible
comparing with the ever-growing task length. Hence, when the
execution time of a single task becomes long, the efficiency of
SA and HA methods compared with the stop-go methods will
become relatively low. On the other hand, CP of both SA and
HA is at least 35.2% less than that of stop-go method no matter
what the task length range is. And SA method shows smaller
number of CP comparing with HA method, while HA method
is much faster than SA method. Therefore, when the task length
becomes longer, our methods will still effectively reduce the
protection penalty when power gating technique is used in the
low power MPSoC.

3) Tradeoff Between Clock Gating Penalty and End Time
Tena: Fig. 15 shows CP with Ty, q relaxation from 0% to 20%.
We use TASK y¢ and TASK ¢ with 80 tasks as test bench-
marks. The task number 80 is 5 times as the PU number of 4 x 4
MPSoC, hence there will be more timing slack for each task
when T4 relaxation becomes larger, hence the CP on 4 x 4
MPSoC decreases continuously with both two task structures.
Up to 40% CP is reduced when T4 relaxes 20%. However,
for 8 x 8 MPSoC, CP decreases less obviously since the task
number is similar to the number of PUs.
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TABLE V
SIMULATION RESULTS OF SA/HA/STOP-GO METHODS ON 40 Task o SCHEDULING ON4 X 4 MPSOC
Task SA HA Stop-go
Length Tona CP/PT Runtime Tond CP/PT | Runtime Tond CP/PT | Runtime
0-20000 46960 265/54 Smin 50750 394/60 0.06s 65770 960/80 0.1s
40000-60000 1387480 | 564/78 3h54min 1448000 | 596/78 Is 147960 | 960/80 Is
80000-100000 2620460 | 559/76 Sh2min 2699080 | 626/80 2s 2700850 | 960/80 2s
120000-160000 | 4056830 | 608/78 8hllmin | 4123900 | 622/80 4s 4123610 | 960/80 4s
180000-200000 | 5607690 | 561/76 | 29hS56min | 5648860 | 572/76 Ss 5724650 | 960/80 Ss
TABLE VI TABLE VII
HA WITH DIFFERENT TASK NUMBERS ON 16/64-PU-MPS0C STATIC SCHEDULING+ONLINE-ADJUSTMENT(SA+OLA) VERSUS ONLINE
STOP-GO WITH TASK n ¢ ON4 X 4 MPSOC
Task Bench 40 tasks 60 tasks 80 tasks
+PU # Tond CP/PT Tond CP/PT Tond CP/PT —
NC+16 | 49380 | 326/50 | 71440 | 660/88 | 85200 | SI4/106 Task 1 SA | Decreased | Increased | SA+ | Teng | On-line
# SA 10 1(i) OLA impr | stop-go
FC+16 81040 88/62 129810 168/104 156910 250/146 30 31730 2179 1042 5772 | 31.2% 33110
- . ‘0
NC+64 30870 | 100/60 | 37970 240/84 41400 | 370/104
FC+64 76310 0/62 120180 0/100 145420 0/136 40 39850 17776 8208 48058 | 28.8% | 67484
60 59440 -33391 11788 71228 | 25.8% 96088
1000 80 81210 -52538 16924 98134 | 16.2% 116852
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Fig. 15. CP versus T.,a relaxation on both 4 x 4 and 8 x 8 MPSoC.

C. Online-Adjustment(OLA)

Since the worst-case execution time is normally used in
static scheduling, the variation between real execution time
and the predicted execution time is assumed to be —20% to
10%. We randomly generate the execution time for each task
in TASK y¢. Since the OLA method ignores the variation of
decreased execution time, T,,q after OLA equals to the result
of SA plus sum of increased execution time. The conservative
stop-go method is easy to be carried out as another simple
online strategy. Table VII shows the comparison of SA+OLA
and online stop-go, our SA+OLA still leads to up to 30% Teona
improvement. The upper bound of CP for SA+OLA can be
estimated as: CPs4 + Niask+ X Npy. If the number of tasks
with increased execution time (Niask+) is small, we will still
achieve less CP: for example, CP upper bound of 80 tasks on
16-PU-MPSoC using SA+OLA is 696 + 28 x 16 = 1144,
about 50% of CP by online stop-go method: 2160.

VIII. CONCLUSION AND FUTURE WORK

In this paper, the power gating aware task scheduling problem
based on our P/G noise analysis platform is formulated for
MPSoC. Efficient methods, such as SA and HA are proposed for
static scheduling at design time. The algorithms can improve
the MPSoC performance while reduce the noise protection
penalty. Extensive performance evaluation results show that the

new methods can achieve considerable improvement compared
with the conservative stop-go method. Furthermore, a light-
weight online adjustment strategy is proposed together with the
offline scheduling results to improve the chip reliability.

For future work, the improvement can be done by 1) consid-
ering both the run time P/G noise induced by working current
and the powering-on/off induced P/G noise and 2) combining
P/G noise with thermal/power effects.
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