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Domain of stereo vision is highly important in the fields of autonomous cars, video tolling, robotics, and
aerial surveys. The specific feature of this domain is that we should handle not only the pixel-by-pixel 2D
processing in one image but also the 3D processing for depth estimation by comparing information about
a scene from several images with different perspectives. This feature brings challenges to memory resource
utilization, because extra dimension of data has to be buffered. Due to the memory limitation, few of
previous stereo vision implementations provide both accurate and high-speed processing for high resolution
images at the same time.

To achieve domain-specific acceleration for stereo vision, the memory limitation has to be addressed. This
paper uses a Mini-Census Adaptive Support Region (MCADSR) stereo matching algorithm as a case study
due to its high accuracy and representative operations in this domain. To relieve the memory limitation
and achieve high-speed processing, the paper proposes several efficient optimization methods including
vertical-first cost aggregation, hybrid parallel processing, and hardware-friendly integral image. The paper
also presents a customizable system, which provides both accurate and high-speed stereo matching for high
resolution images. The benefits of applying the optimization methods to the system are highlighted.

With the above optimization and specific customization implemented on FPGA, the demonstrated system
can process 47.6 fps (frames per second) and 129 fps for video size of 1920 x 1080 with a large disparity
range of 256 and 1024 x 768 with a disparity range of 128 respectively. Our results are up to 1.64 times
better than previous work in terms of million disparity estimation per second (MDE/s). For accuracy, the
7.65% overall average error rate outperforms current work which can provide real-time processing with this
high resolution and large disparity range.
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1. INTRODUCTION

TEREO VISION extracts 3D information from digital images. By comparing two dif-
fering views on a scene obtained from two horizontally dispatched cameras, the
relative depth information can be obtained in the form of disparities, which are in-
versely proportional to the distance to the objects. Stereo vision is widely used in em-
bedded scenarios, such as autonomous cars, video tolling, robotics, and aerial surveys.
However, stereo vision poses a significant implementation problem because of an extra
dimension of computation for 3D information compared with conventional 2D image
processing. Due to the design complexity and resource limitation in embedded sce-
narios, implementations on general-purpose processors usually struggle to meet both
accurate and high-speed requirements under high resolution and large disparity range
constraints.

Domain-specific acceleration is tailored for one application domain, and thus, can
enhance performance of the system under resource limitation. For stereo vision accel-
eration, the biggest challenge is the memory limitation caused by the extra dimen-
sion of data storage. To address this challenge, some optimization methods and a high
throughput customizable platform should be used to satisfy the accurate and high-
speed processing requirements. At the same time, the deployment and updating cost
should be carefully considered.

Realizing stereo vision system on GPUs is easier than on other customizable plat-
forms [De-Maeztu et al. 2012][Yang et al. 2006][Wang et al. 2006]. However, it is still
hard to achieve real-time processing because of internal memory bandwidth limita-
tion. Besides, GPUs are not feasible for embedded applications due to its high power
consumption.

FPGAs are promising platforms with strong customizable computation power and
relatively low power consumption. Existing efforts of accelerating stereo vision system
on FPGAs mostly choose the regular algorithms with fixed data access and operation
pattern to utilize the advantage of FPGAs. [Shan et al. 2012] [Chang et al. 2007] [Am-
brosch et al. 2009] [Jin et al. 2010] are all based on the fixed rectangle support region
and the accuracy is very low. [Zhang et al. 2011] proposes a structure for adaptive sup-
port region and achieves high-speed processing. However, the 2-D adaptive support
region is simplified to 1-D adaptive in their work, which also causes a decrease in ac-
curacy. [Jin and Maruyama 2012b] proposes a tree-structure implementation based on
the global optimization and gets a good accuracy. However, real-time processing will
become difficult for these efforts when dealing with larger image and larger dispar-
ity range because of memory resource limitation. Thus, "how to optimize the system
according to the domain-specific features so as to reduce the memory resource con-
sumption to make the system realizable” is an emerging problem.

This paper presents an FPGA based stereo vision system, which provides both accu-
rate and high-speed processing for high resolution images. The implementation uses a
Mini-Census Adaptive Support Region (MCADSR) algorithm which provides accurate
matching results. To solve the memory limitation problem caused by 3D information
computation in the algorithm, we propose three domain-specific optimization methods
including vertical-first aggregation, hybrid parallel processing and hardware-friendly
integral image. Our main contributions are:

(1) vertical-first cost aggregation which significantly reduces the memory resource
consumption;

(2) hybrid parallel processing which efficiently reuses the intermediate results and
provides a trade-off between different on-chip resources;

(3) hardware-friendly integral image which uses hierarchical adder tree for the verti-
cal aggregation and shifter for the horizontal aggregation separately;
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(4) an accurate and high-speed stereo vision system on FPGA using MCADSR algo-
rithm and above optimizations, which can achieve on average 7.65% error rate.
The processing speed is 47.6 fps and 129 fps for image size of 1920 x 1080 with a
disparity range of 256 and 1024 x 768 with a disparity range of 128, respectively.

The remainder of this paper is organized as follows. Section 2 introduces background
and previous work about stereo vision. Section 3 gives the detail of the MCADSR stereo
matching algorithm. Section 4 illustrates our proposed optimization methods. Sec-
tion 5 introduces the hardware implementation on FPGA. The experimental results
are presented in Section 6. Section 7 concludes this work.

2. BACKGROUND & RELATED WORK
2.1. Stereo Matching background

Stereo matching algorithms or disparity estimation algorithms aim to establish cor-
respondence between a pair of images. This requires a pixel-by-pixel search through
the whole image, consuming a large amount of computation power. In remedy of this,
most stereo matching algorithms employ camera calibration and image rectification,
aligning each epipolar lines to a common axis and projecting each image to a common
image plane. This ensures the stereo matching is reduced to a 1D searching problem
along the same horizontal scanline of the image pair.

Given two calibrated and rectified images, the problem of stereo matching can be
addressed by finding the corresponding pixel in the right image for each and every
pixel in the left. To avoid the problem caused by image noise, a support region is built
for each pixel and the matching is carried out over these regions instead of pixel by
pixel. Given a pixel P(x,y) in the left image, its corresponding pixel Q(x+d, y) is found
on the same horizontal line in the right image, where 0 < d < D_MAX, D_M AX is the
largest search distance and d is called a disparity. Then the matching cost is computed
over the support region of each pixel pair. The smaller the cost is, the more similar
these support regions are. Hence, the corresponding pixel is defined as the anchor
pixel of the support region with the minimal matching cost among all candidates.

Implementing such stereo matching algorithms on dedicated hardware systems has
shown its potential over the years. By concurrently computing the matching cost of a
range of disparity levels, these systems achieve high processing speed. However, the
processing of each disparity level requires large amount of buffer for input images and
intermediate results. As a result, the stereo matching module as a whole consumes
significant amount of memory resource. Hence, relieving memory consumption is the
major challenge for an accurate and efficient stereo matching system.

2.2. Related Work

Stereo matching algorithms typically fall into two different categories: global and lo-
cal approaches. In global approaches, disparities are determined based on the opti-
mization of a global energy equation, providing optimal results of all pixels. Local
approaches determine disparities based on the consideration of pixels only within a
support region, leading to reduced computation intensity and greater potential in real-
time implementations.

Prior work has attempted to increase the stereo system throughput using dedicated
hardware such as FPGAs and improve the disparity accuracy using more sophisticated
algorithms. We discuss some of the related work in this section.

Local Stereo Algorithms Ambrosch et al. [2009] implements an SAD-based fixed-
support algorithm using state-of-the-art FPGA device, achieving 599 FPS at an image
size of 450 x 375 and a disparity range of 100. Shan et al. [2012] proposes a Hybrid-D
box-filtering algorithm that combines the 1D and 2D algorithms to reduce the compu-
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tation and memory cost, leading to lower memory consumption of 0.95Mbits and the
performance of 46 FPS at 1280 x 1024 with a large disparity range of 256, and the
estimation speed reaches up to 15437TM DE/s. Jin et al. [2010] adopts Census trans-
form and computes the matching cost through the Hamming distance, which obtains
significant increase in accuracy compared to SAD-based methods.

The majority of the above implementations adopt fixed-support regions to achieve
real-time performance, as these algorithms can be greatly benefited by the use of par-
allel and straightforward structures, which are key factors available in dedicated hard-
ware implementations such as FPGAs. However, these proposals have relatively high
disparity error rates (usually larger than 15%).

The adaptive support weight (ADSW) algorithm are capable to deliver better match-
ing accuracy. However, this algorithm involve complex and hardware-unfriendly oper-
ations and are computationally more expensive compared to fixed-support algorithms.
As a result, ADSW algorithms have been rarely implemented in dedicated hardware.
Chang et al. [2010] explores the potential of realizing an ADSW algorithm on VLSI
architecture and successfully proposes an accurate, hardware-friendly disparity esti-
mation algorithm called Mini-Census Adaptive Support Weight (MCADSW), leading
to improved matching accuracy. However, their work achieves real-time performance
for relatively small-sized images as 42F PS@352 x 288, which is insufficient to meet the
high resolution requirement.

Another featured algorithm is adaptive support region (ADSR) algorithm, which is
able to achieve an error rate of 7.60% [Zhang et al. 2009a]. Zhang et al. [2011] im-
plements a Mini-Census adaptive support region algorithm on FPGA and obtains a
high accuracy and fast estimation speed on high resolution images, which consumes
3.77Mbits memory. As mentioned above, they trades off the full adaptiveness of the
algorithm in order to alleviate the complexity and achieve pipelining, resulting in
increased disparity error rates as 8.20%. This ADSR algorithm can be viewed as a
lite version of ADSW where the weight of neighboring pixels is either one or zero.
Thus, these algorithms require only some additional optimization methods to be im-
plemented compared to fixed-support ones while preserving the adaptiveness of ADSW
algorithms.

Global Stereo Algorithms Dynamic Programming (DP) [Veksler 2005] [Wang
et al. 2006] [Jin and Maruyama 2012b] is a technique that can offer optimized solu-
tion for independent scanlines in an efficient manner. As the DP algorithms optimize
the disparity map on a scanline by scanline basis, the inter-scanline consistency is not
enforced, leading to the well-known “streaking” artifacts. Jin and Maruyama [2012b]
proposes a tree-structured DP algorithm aiming to address this issue (see Fig. 15).
However, it can hardly be eliminated.

Belief Propagation (BP) [Klaus et al. 2006] [Yang et al. 2006] is a new global algo-
rithm that has attracted much attention recently. It gathers information from neigh-
boring pixels and incorporates the information to update a smoothness term between
the pixel of interest and its neighborhood, and iteratively optimizes the smoothness
term to achieve global energy minimization. Unlike scanline methods, these algo-
rithms enforce optimization in two dimensions. Though some of the most impressive
results are obtained [Klaus et al. 2006], real-time implementations using BP algorithm
have never been achieved.

Jin and Maruyama [2012a] proposes a fast stereo matching system on FPGA. They
introduces fast locally consistent (FLC) algorithm together with cost aggregation to
improve accuracy. In considering the balance of processing speed and the circuit size,
they limit the vertical span of support region to 11 and the disparity range to 60.
However, the memory consumption is still as high as 198 block RAMs at 1024 wide
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images and the reduced disparity range is not sufficient for a image size of, if not
larger than, 1024 x 768.

In all of the above global algorithms, high accuracy is achieved at the cost of low
processing speed, which struggles to meet real-time processing. In contrast, our de-
sign goal is to provide real-time high-definition performance without compromising
the accuracy. Hence, we propose a fully pipelined hardware implementation of a high-
accuracy local stereo algorithm. The proposed algorithm and hardware design is illus-
trated in the following sections.

3. MINI-CENSUS ADAPTIVE SUPPORT REGION ALGORITHM
3.1. Overview

The selected local algorithm is Mini-Census Adaptive Support Region (MCADSR). This
algorithm is effective and simple which can provide relatively accurate results only
with the modification of adaptive support region instead of the rectangle one. Mean-
while, the optimization for aggregation of 2-D adaptive region can benefit many other
stereo vision algorithms. The overall flow is shown in Fig. 1. The system takes two cali-
brated and rectified images as input and performs four main steps: Mini-Census trans-
formation, adaptive support region build-up, cost aggregation, and disparity selection
and refinement. First, Mini-Census transformation step locally transforms each pixel
into a Mini-Census string. Second, adaptive support region is configured as a cross
skeleton for each pixel based on the luminance similarity. In cost aggregation step,
matching cost which is defined as the Hamming distance between two Mini-Census
strings is aggregated on the support region for each pair of pixels under a certain
range of disparities. In the end, the disparity with the minimum matching cost is se-
lected and refined for each pixel so as to produce the final disparity map. The detail
will be explained in the following subsections.
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Fig. 3. (a) Configuration of an appropriate cross skeleton for pixel of interest P based on the local image
structure. The quadruple {h, , h;‘, vp , v;' } denotes the left, right, up and bottom arm length, respectively.
(b) Matching costs along each direction are aggregated on the entire support region in cost aggregation step.

3.2. Mini-Census Transformation

Census transformation converts the support region into a string of bits by intensity
comparison between the center pixel (pixel of interest) and other pixels nearby. Census
stereo matching [Zabih and Woodfill 1994] utilizes the bit string, achieved by census
transformation, to represent the center pixel instead of its intensity. This method has
been shown to provide very robust and accurate disparity results comparing with other
local methods and is very well-suited to be implemented on FPGAs due to many bitwise
operations. [Fife and Archibald 2013] analyzed a range of sparse census transforms
and concluded that the correlation accuracy for the sparse transform is often better
than or nearly as good as the full Census transform on standard image datasets.

The selected stereo matching method begins by applying Mini-Census transform
which is also a sparse version of Census transform to both left and right images. It
transforms 8-bit intensity of every pixel into a bit string where each bit corresponds
to a certain pixel in the local neighborhood around a pixel of interest. As is shown
in Fig. 2, a bit is set if the corresponding pixel has a lower 8-bit intensity than the
pixel of interest. Thus, Census transform not only encodes the relative intensity of
pixels, but also the spatial structure of the local neighborhood. This transformation
reduces the on-chip storage and makes the stereo matching robust to radiometric
changes [Hirschmuller and Scharstein 2009].

Once the input images have been transformed, stereo matching is typically per-
formed by computing the sum of the Hamming distances over a support region, which
will be defined in the following subsection.

3.3. Adaptive Support Region Build-up

Ideally a local support region should contain only the neighboring pixels from the same
depth with the pixel of interest. Though disparity information is unavailable before-
hand, the support region builder still should be aware of local image structures. We
utilize the common assumption that pixels with similar intensity within a constrained
area are likely from the same image structure and adopt the cross-based local support
region proposed by [Zhang et al. 2009a] for accurate local stereo matching.

The key idea of this mechanism is to configure an appropriate cross skeleton for
each pixel based on the local image structure (see Fig. 3(a)). The cross of each pixel of
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interest is defined by a quadruple {h,, .}, v, , v} that denotes the left, right, up and
bottom arm length, respectively. Unlike fixed support method, this mechanism is able
to exclude pixels from image structures which are different from the pixel of interest,
avoiding pollution caused by those pixels and thus providing both sufficient and proper
support pixels.

The arm lengths are decided upon an intensity testing for a consecutive set of pixels
to search for the largest span on each direction. The computation of support arm length
can be formulated as follows:

L= L 5(p, ps 1
e ‘el[:[L] (p,:) (1)

where L_M AX is the preset maximum arm length and §(p;, p2) is an indicator function
evaluating the intensity similarity between pixel p; and p,

_ 1 forI(p1) —I(p2) <7
Op1p2) = {0 otherwise

(2

where I(p) is the intensity of pixel p and 7 is the similarity threshold.

Based on the cross skeleton, an arbitrarily shaped support region U(p) can be con-
structed for pixel p, where U(p) is defined as an integral of multiple horizontal seg-
ments H(q) along the vertical segment V (p), or multiple vertical segments V (g) along
the horizontal segment H(p) of the pixel p. Aggregating matching costs over such re-
gions involves irregular memory references, causing difficulty in meeting real-time
performance for the entire stereo matching system. Our solution regarding the choice
between the two aggregation sequences will be discussed in Section 4.

up)= U Hle oo U= | V@ 3

q€V (p) g€ H (p)

3.4. Cost Aggregation

In the cost aggregation step, the Hamming distance, Ham(p, d), between the pixel p
in the left transformed image and corresponding pixel in the right transformed im-
age at the disparity of d, is calculated firstly. And then the matching cost of pixel p
is calculated by aggregating the Hamming distance of the adaptive support region.
Here, we adopt the orthogonal two-pass technique proposed in the Variable-Cross
algorithm [Zhang et al. 2009a], which decomposes aggregation on a 2-D support re-
gion into a vertical aggregation and a horizontal aggregation. The technique firstly
aggregates vertically (horizontally) to give a vertical (horizontal) aggregated cost,
VA(p,d) (HA(p,d)), of each column (row) firstly, and then the horizontal aggregated
costs are aggregated horizontally (vertically) together to give the final matching cost
AggCost(p,d) at the disparity of d.

VA(p,d) = Z Ham(q,d) or HA(p,d) = Z Ham(q,d) 4)
g€V (p,d) q€H (p,d)

AggCost(p,d) = Z VA(r,d) or AggCost(p,d) = Z HA(r,d) (5)

re€H (p,d) reV(p,d)

The main ideas are twofold. First, through aggregating matching cost along support
arm, independent cross skeletons are also merged to form a complete support region
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for each pixel (see Fig. 3(b)). This arbitrary region which is the union of vertical arms
of horizontal neighbors or horizontal arms of vertical neighbors, is able to provide
sufficient area for aggregation and take account of local image structures as well. As a
result, performance is improved on regions near depth discontinuities.

Second, this two-pass approach involves two separate 1-D aggregation instead of
one 2-D aggregation on arbitrarily shaped regions. In the conventional 2-D aggre-
gation approach, the computation complexity is O(L_MAX? x D_-MAX x IMG _size),
where L_M AX is the maximum support arm length, D_MAX is the maximum dis-
parity range, and I MG _size is the pixel number of the image. While, in the two-pass
approach, the complexity is O(L_.MAX x D_MAX x IMG _size) for both vertical and
horizontal aggregation. So, the computation complexity of the two-pass approach in-
creases linearly instead of squarely with the length of the support arm. However, due
to increased bandwidth and large amount of buffer cost by the aggregation step, fur-
ther optimization methods are required to accelerate this process and reduce the hard-
ware overhead (see Section 4).

Since the support region varies from pixel to pixel, we should normalize the aggre-
gated matching costs through dividing them by the area of corresponding support re-
gion. As a result, this cost aggregation step should be capable of counting the number
of pixels on support region as well.

3.5. Disparity Selection

Once matching costs and pixels counts are available, the disparity with the minimum
normalized matching cost is attainable through a tree-structure Winner-Takes-All
(WTA) module. The implementation details will be discussed in Section 5. After that,
post-process including outlier detection and sub-pixel interpolation is performed to
refine the final disparity map.

The proposed MCADSR algorithm lays the foundation for a high accuracy local
stereo system by incorporating Mini-Census transform and adaptive support region,
which improves the performance on images with radiometric changes and regions near
depth discontinuities. However, this algorithm brings in computation complexity as
well due to the adaptive support region. It is hard to reuse the intermediate results
and the computation amount will increase especially for high-resolution videos. Con-
sidering the limited logic and memory resources, to achieve a high-speed processing on
customizable platforms need lots of efforts. To this end, we propose three optimization
methods for efficient hardware implementation.

4. PROPOSED OPTIMIZATION METHODS

Using MCADSR algorithm, the accuracy can be guaranteed by the adaptive support
region and Mini-Census transform. However, it also brings in large computation com-
plexity not only due to the large number of operations but the irregular pattern of
operations. When assuming L_M AX for maximum support arm length and D_MAX
for maximum disparity range, up to (L_.MAX x2+1)?x D_M AX times of Hamming dis-
tance measurement and summation are needed to compute matching cost of one pixel.
Considering the ever increasing image size and disparity range, these operations can
be very time-consuming. On the other hand, the adaptive support region makes it even
harder to reduce the complexity by utilizing data reuse, because the overlapping sup-
port regions of each pixel become arbitrary. All these factors will cause difficulty in
meeting high-speed requirement for the entire stereo vision system.

We propose several optimization methods to reduce the number of operations and
increase data reuse. These methods are general and hardware-friendly which can ben-
efits many computing platforms under resource constrains. First, we propose vertical-
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(a) (b) (V]

Fig. 4. The proposed aggregation sequence. (a) The support region of the pixel of interest P, which is a com-
bination of vertical arms of horizontal neighbors. A matching cost with pixel P is measured by aggregating
on the entire support region. The whole cost aggregation step involves a (b) vertical aggregation followed by
(c) a horizontal aggregation on vertically aggregated costs.

first aggregation to save memory resources. Second, we propose hybrid parallel pro-
cessing to utilize data reuse. Third, we propose two hardware-friendly integral image
methods to reduce the operation amount of vertical and horizontal cost aggregation
respectively. Using these optimization methods, accurate and high-speed stereo vision
system become a reality on resource-limited platforms. A detailed introduction of each
method is given below.

4.1. Vertical-first Aggregation

In the stereo matching step, for each pixel of interest in the left image, right image
should provide as many as the number of disparities pixels to pair with it. To accel-
erate this matching process, the cost aggregation of each disparity level is performed
concurrently using same hardware modules. Within each module, the matching cost
over the support region is initiated and then aggregated in a two-pass manner.

There are basically two kinds of orthogonal two-pass aggregation method according
to the 1-D aggregation sequence in adaptive support region scenario. The horizontal-
first one aggregates horizontally to give a horizontal aggregated cost of each row firstly,
and then the horizontal aggregated costs are aggregated vertically together to give the
final matching cost. On the contrary, the vertical-first one firstly computes the vertical
aggregated cost as shown in Fig. 4. These two methods have nearly the same accuracy
and previous work usually adopts the former one without detailed analysis [Zhang
et al. 2011] [Jin and Maruyama 2012a]. However, we will see from below that the
horizontal-first scheme will cost unaffordable memory resource. In this work, we pro-
pose vertical-first aggregation in adaptive support region algorithm to largely reduce
the memory consumption.

As shown in Fig. 5 (a), using horizontal-first method, the differences of the cor-
responding horizontal arms are measured by the Hamming distance and then ag-
gregated into horizontal aggregated cost. The bitwidth of the Hamming distance in
the horizontal aggregation should be [log, (census_width)], where census_width is the
bitwidth of the Mini-Census bit string. And the bitwidth of horizontal aggregated
cost should be ([log, (census_width)] + [log, (L_.M AX x 2+ 1)]) after an aggregation of
L_MAX x 2+ 1 Hamming distance. Several lines of these results which could reach up
to (L_MAX x2+1) x IMG_width of elements must be buffered in order to calculate the
final matching cost vertically. Meanwhile, since the same aggregation process should
be completed for each and every disparity, the number of this group of line buffers is
proportional to the disparity-level parallelism. So, the total size of the line buffers be-
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Fig. 5. The overview of hardware implementation of two different stereo matching modules using (a)
Horizontal-first aggregation and (b) Vertical-first aggregation.

tween the horizontal and vertical aggregation will reach up to ([log, (census_width)] +
[logy (L-MAX x 2+ 1)]) X IMG_widthx (L-M AX x2+1) x disparity. Supposing a stereo
matching system dealing with a high definition of 1920 x 1080, disparity range of 256,
L_MAX of 15 and 6-bits Mini-Census transform, the memory consumption should be
121.90 M bits. This number is unaffordable for resource-limited platforms. For example,
the latest Altera Stratix V FPGAs have only 40.73Mbits on-chip memory. If the data
are stored in off-chip memory, the bandwidth will be the bottleneck due to the large
amount of concurrent access. At the same time, the resource consumption will keep
increasing with higher and higher requirement of applications.

We propose vertical-first aggregation method for our MCADSR algorithm as shown
in Fig. 5 (b). At the beginning of the aggregation step, the left and right images are
buffered for several lines. For the right image, which is also called the candidate im-
age, several columns of shift registers are initialized at the output ports of the line
buffer and these are vertical arms used for the vertical aggregation for different dis-
parity levels. After the vertical aggregation, the vertical-first method only needs to
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Fig. 6. Row-level parallelism: data from four image rows can be processed concurrently by adding 3 addi-
tional pixels to the vertical integral range.

buffer L M AX x 2+ 1 of elements for the horizontal aggregation. Comparing with the
horizontal-first method, it is /M G_width times reduction of memory consumption.

The key idea of this method is as follows. In these full pipelined architectures, the
first aggregation step, no matter vertical or horizontal, takes input from the left and
right images directly, while the second aggregation step takes intermediate results
from each disparity level. As a result, the buffering of the first step can be done di-
rectly to the image pair in a centralized way, while the buffering of the second step has
to be distributed into the processing of each disparity level. Meanwhile, the vertical
aggregation requires the storage of several lines of data in order to process vertically.
On the contrary, the horizontal aggregation only requires the storage of a range of data
from the same horizontal line. Therefore, putting the storage-hungry vertical aggrega-
tion first can significantly reduce the memory consumption.

4.2. Hybrid Parallel Processing

In order to achieve high-speed processing, we propose a row-level parallel method and
combine it with conventional disparity-level parallelism. This hybrid parallel process-
ing method could efficiently utilize data reuse and reduce computation resource con-
sumption.

In stereo matching, the matching cost calculations for different disparities have no
data dependency and can be executed in parallel. This is called the disparity-level par-
allelism. Nearly all the previous work utilized this kind of parallelism and tried to
calculate the final matching cost of one pixel with all the disparities at the same time.
However, this kind of parallelism may need up to disparities copies of computation
units and each unit may cost large amount of computation resources when using nor-
mal aggregation algorithm. This is unaffordable for resource-limited platforms, such
as FPGAs. One way is to reuse the computation units in different time periods but this
will increase the computation time to several cycles for one pixel.

Another way is to reuse the intermediate data results to reduce the complexity of the
computation unit. In the vertical aggregation, the original idea is to utilize one vertical
support arm for one pixel’s computation. Obviously, there are common data between
the computation of several pixels in neighbor rows within the same column. Here, we
propose a row-level parallelism that could calculate the vertical aggregated costs of
pixels in different rows together. As shown in Fig. 6, we have added 3 more pixels of
the neighbor rows to the vertical maximum aggregation arm, and then these 4 pixels’
vertical aggregated costs, VA(P,), VA(P2), VA(Ps), and VA(Py), can be calculated at
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Fig. 7. (a) The summation along the support arm is pre-computed. (b) Then two values are selected accord-
ing to support arm length to produce the partial sum. (¢) Row-level parallelism is supported by summing
more pixels and picking multiple pairs of values to yield results for each image row.

the same time with lots of common data. Compared with one pixel’s computation, there
are minor increases of computation resources in vertical aggregation module if proper
method is adopted which will be detailed described in the next subsection. Utilizing
this kind of row-level parallelism, the number of disparity-level parallelism can be
reduced accordingly. So, the system can be more area efficient while achieving the
same performance. In the horizontal aggregation, the scan sequence is the same as the
aggregation sequence. It is hard to achieve parallelism along this sequence. However,
there are also data reuse opportunities and this will be utilized to reduce computation
amount which will also be described in the next subsection.

4.3. Hardware-friendly Integral Image

As stated previously, the size of support region of different pixels is entirely arbitrary.
Fortunately, the 2-D aggregation is replaced by two orthogonal 1-D aggregations using
a cross-based variable support region. This makes the support region simple: support
arm. Taking advantage of this special structure, it is only needed to do aggregation
in horizontal arms and vertical arms. To further reduce the computation complexity,
Zhang et al. [2009a] proposed an efficient way using integral images [Veksler 2003]. As
is shown in Fig. 7 (a), this method pre-computes the sum of all initial costs to the above.
After the integral image is computed, the sum of initial costs over any support arm
length can be computed via a minus operation as shown in Fig. 7 (b). The main ideas
are twofold. First, by pre-computing an integral image before producing the aggregated
results, this method reduces the number of re-referencing times and relieves the inner
consumption of bandwidth. Second, it provides constant processing time guarantees on
both vertical and horizontal line with varying length. Based on the above mechanisms,
we are able to pipeline the entire cost aggregation step on arbitrarily shaped support
regions.

In the matching cost computation, we propose two hardware-friendly integral image
methods for the vertical and horizontal aggregation respectively. For the horizontal
one, a shifter architecture with limited length is used to save storage. For the vertical
one, an extended integral image is used for aggregation which could produce several
results belong to different rows at the same time with minor increases of resources
consumption.

For the horizontal aggregation, the original method has to build the integral image
firstly and this will also involve large amount of memory storage. Considering that
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long. Those results are selected according to the support arm length and then shifted each cycle, with the
oldest value swapped out.

the horizontal aggregation only needs the data of the support arm. The earlier aggre-
gated data will soon become useless and should be thrown. So we propose a shifter
based horizontal aggregator as shown in Fig. 8. The aggregated vertical cost will be
added with the last data of the shifter and then be stored into the last position of the
shifter. The other data in the shifter will move forward one position. The subtraction
of the left arm end and the right arm end is the horizontal aggregated cost which is
the final matching cost AggCost(z,y,d). For simple consideration, the structures for
PixzCount(z,y,d) aggregation are not depicted in the Figure, which are essentially the
same.

Noted that this conventional integral image technique also requires a considerable
amount of memory resource to cache L M AX x 2 lines of integral results so as to
serve the vertical aggregation of the following row. Considering the disparity-level
parallelism, the original method needs to store disparities copies of line buffers, which
store the vertical integral image. This is unaffordable and we have to compute the
integral image for every support region for every pixel without data reuse. While, if the
row-level parallelism is considered, the extended vertical integral image can serve sev-
eral pixels at the same time. As shown in Fig. 7 (c), the support regions of the 4 pixels
in the neighboring rows and the same column has a lot of common data. So three more
data are added to the support region which is called extended support region in our
paper. And then an extended integral image is built based on this region. At last, the
4 vertical aggregated costs can be achieved at the same time. Using this method, the 4
copies of up to L_M AX x 2 addition can be reduced to 1 copy of L_M AX x 2+ 3 addition.

We presented how the three optimization methods improve the hardware imple-
mentation of MCADSR algorithm in terms of memory consumption and high-speed
processing. Moreover, these methods as general optimization methods also benefit the
domain of stereo vision. Vertical-first aggregation basically can be incorporated in algo-
rithms requiring a two-pass aggregation, especially over an arbitrarily shaped region.
Hybrid parallelism can be obtained based on the disparity level parallelism, leveraging
data reuse opportunities in neighboring image lines and providing a knob that allows
a tradeoff between the disparity level and row level parallelism. Hardware friendly
integral image can be broadly applied to the aggregation process in this domain. And
this method provides constant processing time guarantees on the summation over any
given regions.
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Fig. 9. Overview of the hardware implementation of our proposed algorithm.

5. HARDWARE IMPLEMENTATION

To achieve high-speed MCADSR stereo matching, we propose a full pipelined design
on FPGA which can operate at pixel clock. The optimization methods, proposed in Sec-
tion 4 for customizable platforms, are carefully mapped onto FPGA under the memory
resource constraints. First, a customized datapath involving both full pipelined and
hybrid parallel processing is proposed. The high-speed processing is guaranteed by
the pipeline and parallelism, and the memory consumption is reduced by the hybrid
parallel architecture. This architecture is designed in a parameterized method based
on which the trade-offs can be easily analyzed. Second, hierarchical adder tree and
RAM based shifter are used for vertical and horizontal integral images in cost aggre-
gation. The intermediate results are highly reused to save the computation resource.
Besides, some general techniques are used in other modules, such as line buffer storage
in Mini-Census transformation and adaptive support region build-up.

Fig. 9 shows our proposed hardware design. The video frames and disparity results
are stored in the off-chip DDR2 SDRAM. The processing blocks are all implemented
using FPGA in a full pipelined processing method. The architecture on FPGA consists
of three high-level modules: pre-processing, stereo matching, and post-processing. The
pre-processing module changes the input gray image into the Mini-Census represen-
tation and builds up the support region for each pixel. The stereo matching is the main
processing module which contains three parts: a vertical cost aggregator, a horizontal
aggregator and a WTA calculator. The post-processing module will exclude the error
matching and refine the results. The detail will be explained in the following subsec-
tions.

5.1. Hybrid Parallel Processing

We have proposed a hybrid parallel method that utilizes both disparity-level paral-
lelism and row-level parallelism in Section 4.2. With row-level parallelism incorpo-
rated, the disparity-level parallelism can be lessened, leading to reduced resource con-
sumption without changing the processing.
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Fig. 10. (a) The proposed hierarchical adder tree for the vertical aggregation; (b) A computation example
using hierarchical adder tree: two values from the last level and two values from the first level are se-
lected based on the support arm length to produce the exact result; (c) Row-level parallelism support with
additional adding structure and selecting logic.

Fig. 9 shows the utilization of P; disparity-level and P, row-level parallelism for a
stereo matching with D_MAX disparities in total, where D_MAX = P; x P,. The
system works like this: first, it concurrently scans pixels from P, lines for the first P,
disparities (i.e. 0 ~ P; — 1). And then the system rescans these P. lines for the second
P, disparities (i.e. P; ~ Py x 2 — 1). This will last until all the disparities are scanned,
after which the process of P, new lines will begin.

As a result, available Mini-Census strings and support arm lengths should be
buffered in order to serve the re-reference from cost aggregation module, rather than
be outputted directly. To ensure that the aggregation can be performed continuously
without any pause, this specific buffer should also provide additional lines to hold in-
coming data and hence, avoid pollution to the data in use. As cost aggregation module
vertically takes L_ M AX x 2+ P, data at a time and scans P, times per image line, the
height of the buffer should be set to L M AX x 2 + P. + P.. Once P, scans on current
line are completed, the buffer should “jump” P, lines to continue.

With the buffer described above, the streaming Mini-Census strings and support
arm lengths are buffered and outputted vertically to perform the proposed vertical-
first aggregation under hybrid parallelism. Modifications to other submodules will be
discussed in the following subsections.

5.2. Vertical and Horizontal Integral Image for Cost Aggregation

Integral image is usually used in cost aggregation due to its natural feature of data
reuse. Due to the resource constraints, two optimizations are proposed in Section 3 for
the vertical and horizontal aggregation respectively. When being mapped onto FPGAs,
there are still some challenges, such as long latency for the vertical aggregation and too
many registers consumption for the horizontal aggregation. We propose hierarchical
adder tree and RAM based shifter with reduced bit-width to overcome the challenges.

Using traditional vertical integral image, the latency will be L_MAX x 2 addition
and this is too long. Fig. 10 illustrates the proposed vertical integral image for cost ag-
gregation. The input Mini-Census strings are first buffered to be aggregated vertically
(line buffers are not included in the Figure). In order to save aggregation cycles, we
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Fig. 11. The detailed hardware architecture of horizontal aggregation. The shifter is implemented using
3-port RAM and offset computing logic.

implement a hierarchical adder tree as in Fig. 10 (a), which computes partial sums to
produce the final result based on the idea of integral image. The vertical support arm is
divided into several groups firstly. In the first cycle, the integral image is built for each
group. In the second cycle, the last data of each group, which is also the summation
of each group, is fetched to build the second layer of integral image. In the third cycle,
the vertical aggregation can be drawn by two data from the first stage’s integral image
and two data from the second stage as shown in Fig. 10 (b). With this structure, the
vertical aggregated results can be produced within three cycles. And this is suitable for
row-level parallelism as shown in Fig. 10 (c). Note that the partition granularity has
close relation with the maximum processing frequency due to the critical path. If the
granularity is too fine in the first level, the critical path in the second level will be very
long due to large number of groups. If the granularity is too coarse in the first level,
then the critical path in the first level will be very long due to large amount of data in
each group. A promising partition is to make the group number similar to the number
of data in each group. We designed a parameterized architecture and the performance
could be tuned during the experiment.

As stated before, an integral image along the row direction is built for our horizontal
aggregation. The proposed shifter architecture is easily built by registers. However,
this will cost too many registers which are very limited resources. We propose an ar-
chitecture in Fig. 11 and the main component is a 3-port RAM based shifter with fixed
length of the maximum aggregation region. There is no need to store the whole row
because the old integral result will soon become useless. The RAM is organized as a
ring structure which is controlled by the write and read addresses. The front end of
horizontal aggregator is an accumulator. The vertical aggregated results are accumu-
lated and then stored in RAMs, which will possibly be fetched to produce the final
AggCost(z,y,d) in the near future. Because only the difference of the two data, the
left and right end of the support arm, in the shifter is needed, not the absolute value
of each data, the bit-width could be reduced to which could express the summation of
the support arm. In our design, bit-width of 13 is used when L_MAX is 15. For simple
consideration, the structures for PizCount(z,y, d) aggregation are not depicted in the
Figure, which are essentially the same.

5.3. Mini-Census Transformation

As stated before, the sparse Census transformation which intends to reduce hardware
resource requirements is able to deliver better results than full Census transforma-
tion [Fife and Archibald 2013]. We implement a 5 x 5 Mini-Census filter to produce
the 6-bit string. The transformation pattern is shown in Fig. 2. In order to make the
window slide over the image in scanline order, we adopt line buffer and register matrix
to preserve the local neighborhood. Certain pixels are compared with the pixel of in-
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Fig. 12. The proposed Mini-Census transformation architecture. Pixels first arrive through a line buffer to
be output vertically, and then transformed on a register matrix of 5 x 5.

terest as pixels come in continuously. With the structure shown in Fig. 12, the output
Mini-Census string rate is synchronized with the input pixel rate.

5.4. Adaptive Support Region Build-up

For storage consideration, we set L_M AX to 15. Inside the algorithm proposed in Sec-
tion 3, we perform a luminance similarity test for a consecutive set of pixels to search
for the largest span in each direction. We present two independent thresholds pro-
viding a finer knob for support region boding: a loose (aggressive) threshold in the
near neighborhood to tolerate moderate changes and a strict (conservative) threshold
in the remote to prevent including unwanted pixels. We empirically set ; = 35 for
dist(p1,p2) < 8 and 7o = 6 for 8 < dist(p1,p2) < L-.MAX in our design.

The architecture for support region builder is very similar to the Mini-Census trans-
former. However, the number of line buffers and the side length of register matrix are
increased to 2 x L_MAX + 1 to cover the maximum possible region. The input data
are first buffered to be examined vertically. Once the data are ready for luminance
similarity check, pixels reside on four directions to the pixel of interest are examined
to produce four bit strings using Equation 2. Then the quadruple {,, h;r, v, v;r }is
produced based on the indicator.

5.5. Disparity Selection & Refinement

After matching cost aggregation the AggCost and PixCount values for all disparity
levels in the ranges [0 : D_M AX — 1] are compared with each other in order to compute
the minimum normalized value and its disparity. The comparison is carried out by a
a tree-structure Winner-Takes-All (WTA) module consisting of a collection of compare
units and registers. Each compare unit receives two pairs of AggCost and PizCount
and their corresponding disparities as input, compares the two normalized values and
outputs the minimum pair along with its disparity. In performing the normalization
step, we use a multiply-subtract technique to track the minimum normalized matching
cost in order to avoid the division computation, which is indicated by (6).

AggCost (dy) AggCost (dy)
PixCount (dy) = PizCount (dy)
= (6)
AggCost (dg) x PixCount (dy) < AggCost (dy) x PixCount (dp)

To explore hybrid parallelism that concurrently process more image rows and less dis-
parity levels, the whole tree-structured WTA module is further divided into several
small trees with line buffers, where results from only a small disparity range are pro-
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Table I. Hardware resource consumption report
\ | Total | Mini-Census | ADSR Builder | Stereo Matcher | WTA |

# of Unites in the System NA 2 2 32 4
Combinational ALUTs 60160 84 1663 1395 2077
Registers 33291 84 550 894 929
Memory Bits 2869138 29460 178719 5704 | 21030
DSP Blocks 512 0 0 0 128

cessed at a stage to find the local minimum value. As a result, local results must be
buffered to compare with the results of the next stage. Such process is repeated until
all local minimum results have been compared. Then the global minimum value and
its disparity within the entire disparity range is ready for output.

The disparity refinement modules including subpixel interpolation and outlier de-
tection use similar structures like line buffer as mentioned above. Hence, we are not
going to illustrate them in detail.

6. EXPERIMENTAL EVALUATION
6.1. Experiment Setup

The proposed MCADSR architecture is synthesized using Altera Quartus-II 11.0 tar-
geting the Altera Stratix IV EP4SGX230 FPGA device. Unless stated otherwise, we
assume an image size of 1024 x 768, disparity range of 0 ~ 127, maximum support
arm length (L_M AX) of 15, and row-level parallelism of 4 which means the evaluated
system simultaneously processes data from 4 image rows. The maximum operation
frequency is 102.86 M H .

Table I lists the detailed hardware resource consumption of each submodule. As
we can see from the Table, the majority of resource is consumed by stereo matching
module, which will scale linearly with the disparity range. The memory consumption
is relatively lower than previous work due to the use of our proposed optimization
methods. The advantages of different optimization methods will be illustrated in the
following subsections.

6.2. Effect of Vertical-first Aggregation

The effect of our proposed aggregation scheme is evaluated by comparing two stereo
vision systems using two different aggregation sequences: vertical-first and horizontal-
first. We use the same configuration as mentioned above and a row-level parallelism
of 4 on both systems. The horizontal-first one causes significantly higher amount of
resource as 9.83Mbits on-chip memory, 58.87k combinational ALUTSs and 29.7k regis-
ters, compared to 2.87Mbits memory, 60.16k combinational ALUTSs and 33.29k registers
of the vertical-first one. Fig. 13(a) depicts the resource consumption of horizontal-first
system normalized to the vertical-first one. Though the logic consumption is lightly in-
creased under vertical-first scheme, the proposed aggregation sequence is able to save
70.8% on-chip memory than the horizontal-first scheme.

The vertical-first scheme uses one central line buffer before cost aggregation step
is performed rather than distributed line buffers in each cost aggregation, which sig-
nificantly reduce the consumption of on-chip memory. Due to the benefit of this opti-
mization technique, we are able to achieve fast processing on much higher resolution
images.

6.3. Effect of Hybrid Parallelism

Fig. 13(b) shows normalized hardware resource consumption of MCADSR as disparity-
level parallelism and row-level parallelism of the baseline system are varied while
keeping the same P; x P,.. The ordered pair on x axis denotes (P, P.), which means
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Fig. 14. (a) The row-level parallelism provides an alternative in scaling parallelism. (b) The proposed
MCADSR architecture scalability.

the number of disparities and the number of image rows concurrently being processed,
respectively. As is shown in the figure, when we trade off disparity-level parallelism in
favor of row-level parallelism, the amount of logic resource as Combinational ALUTSs
and Registers drops while the consumption of memory rises. Comparing with the im-
plementation with full disparity-level parallelism, the first in the figure, the imple-
mentation with row-level parallelism of 4 can save nearly 40.10% ALUTs with the
penalty of only 15.26% memory increase.

To illustrate this, Fig. 14(a) depicts the design space for total parallelism, which
can be formulated as P,y = Py X P,.. Two conclusions are in order: 1) high row-
level parallelism relieves the computation of a large disparity range and meanwhile
requires more image rows to be buffered, 2) under the same level of total parallelism,
the row-level parallelism provides a computation /storage trade-off knob such that we
can select a value that favors our desired metric.

6.4. Design Scalability

The design scalability is illustrated in Fig. 14(b). The detailed configurations are given
as ImageSize(DisparityRange) along the horizontal axis, and the numbers of row-
level parallelism are all 4. The maximum frequencies are 113.64M Hz, 109.67TM H z,
102.86 M Hz and 98.80M H z for different configurations shown from left to right in the
figure. The maximum frequencies decrease as the ImageSize and DisparityRange in-
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Table II. Processing speed comparison for stereo vision system

| Platform | Max Disp. | Image Size | FPS | MDE/s | Algorithm

256 1920 x 1080 | 47.6 | 25242
Proposed FPGA 128 1024 x 768 129 13076 | Mini-Census adaptive support region

64 640 x 480 357 7028

64 352 x 288 1121 7279
Shan et al. [2012] FPGA 256 1280 x 1024 46 15437 SAD-based block matching
Ambrosch et al. [2009] FPGA 100 450 x 375 599 10125 SAD-based block matching
Jin and Maruyama [2012a] FPGA 60 1920 x 1080 76 9456 SAD+Mini-Census-based FLC
Jin et al. [2010] FPGA 64 640 x 480 64 4522 Census transformation
Zhang et al. [2011] FPGA 64 1024 x 768 60 3019 | Mini-Census adaptive support region
Ambrosch and Kubinger [2010] FPGA 60 750 x 400 60 1080 Modified Census transform
Ttofis and Theocharides [2012] FPGA 64 640 x 480 30 589 Segmentation-based ADSW (SAD)
MCADSW [2010] ASIC 64 352 x 288 42 272.5 Mini-Census ADSW
Zhang et al. [2009b] GPU 64 450 x 375 12 129.6 SAD-based adaptive support region
Chang et al. [2007] DSP 16 384 x 288 50 88.5 SAD-based block matching
RealtimeGPU [2006] GPU 32 320 x 240 43 53 Dynamic programming
RealtimeBP [2006] GPU 16 384 x 288 16 22.2 Hierarchical belief propagation
FastAggreg [2008] CPU 16 320 x 240 5 18.9 SAD-based efficient aggregation
VariableCross [2009a] CPU 60 450 x 375 0.63 13 SAD-based adaptive support region

crease. This is because more resource consumption brings more pressure on place and
route, which is one of the key factors for maximum processing frequency in FPGAs.
The scalability figure shows that the numbers of combinational ALUTs and registers
scale almost linearly with the disparity range. The reason is that the cost aggregation
and WTA module should be duplicated as many as the number of disparities. On the
other hand, the amount of memory consumption increases as the image size becomes
larger because the involving line buffers should scale with IMG_WW. The consumption
of DSP blocks corresponds to the multiply computation in the WTA module. As we fix
Pyow to 4 in all schemes in the figure, it scales linearly with the disparity range.

Our proposed optimization techniques significantly reduce the memory resource con-
sumption and enables implementing a Full HD stereo vision system with a large dis-
parity range of 256 using only 5.423Mb on-chip memory. Prior work such as [Jin and
Maruyama 2012a] explores the possibility of a Full HD implementation on FPGA.
However, their memory resource consumption scales fast with disparity range, more
than 14.220Mb out of 14.976Mb on their platform for a disparity range of 60. Thus it
cannot afford a disparity range larger than 60, which is usually not a suitable config-
uration for high resolution images.

6.5. Performance Comparison

Table II shows the speed comparisons between our proposed MCADSR and state-of-
the-art real-time implementations for stereo matching. The processing speeds of dif-
ferent systems are presented in frame rates (FPS) and million disparity estimation per
second (MDE /s), which is equal to IMG_-W x IMG_H x DisparityRange x F'PS.

Our proposed MCADSR implementation is able to deliver 47.6 FPS at 1920 x 1080
with a disparity range of 256 and the processing speed could reach as high as
25242M DE/s. For image sizes of 1024 x 768 with a disparity range of 128, 640 x 480 and
352 x 288 with a small disparity range of 64, the processing speeds are 13076 M DE/s,
T028M DE/s and 7279M DE /s, respectively. Due to different maximum frequencies, the
implementation with image size of 352 x 288 slightly outperforms that with image size
of 640 x 480.

Shan et al. [2012] and Ambrosch et al. [2009] achieve similar performance com-
pared to ours due to the simplicity of SAD-based fixed-support algorithms. Jin and
Maruyama [2012a] achieves a more than 2.5 times slower processing speed than ours.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Hardware Acceleration for Accurate Stereo Vision System using MCADSR A:21

Table Ill. Processing accuracy evaluation for stereo vision system

Image Set Tsukuba Venus Teddy Cones

Algorithms nocc. | all | disc. | nocc. | all [ disc. | mocc. | all [ disc. | nocc. | all | disc. | AVG
ADCensus [2011] 1.07 1.48 | 5.73 0.09 | 025 | 1.15 | 4.10 | 6.22 | 109 | 242 | 725 | 6.95 | 3.97
AdaptingBP [2006] 1.11 1.37 | 579 | 0.10 | 0.21 | 144 | 422 | 7.06 | 11.8 | 248 | 792 | 7.32 | 4.23
Jin and Maruyama [2012a] 1.38 1.84 | 7.36 0.30 0.48 | 2.09 741 12.7 | 175 3.44 | 9.19 | 9.90 | 6.13
VariableCross [2009a] 1.99 | 265 | 6.77 | 062 | 096 | 3.20 | 9.75 151 | 182 | 6.28 | 12.7 | 12.9 | 7.60
Proposed 362 | 415 | 140 | 048 | 0.87 | 279 | 754 | 14.7 | 194 | 3,51 | 11.1 | 9.64 | 7.65
Zhang et al. [2009D] 1.71 | 222 | 674 | 087 | 0.87 | 288 | 990 | 150 | 195 | 6.66 | 12.3 | 134 | 7.65
RealtimeBP [2006] 1.49 | 3.40 | 7.87 | 0.77 1.90 | 9.00 | 8.72 13.2 | 172 | 4.61 116 | 124 | 7.69
Zhang et al. [2011] 3.84 | 434 | 14.2 1.20 1.68 | 562 | 7.17 126 | 174 | 541 11.0 | 139 | 8.20
FastAggreg [2008] 1.16 | 2.11 | 6.06 | 4.03 | 475 | 643 | 9.04 | 152 | 20.2 | 537 | 12.6 | 11.9 | 8.24
RealtimeGPU [2006] 2.05 | 422 | 10.6 192 | 298 | 203 | 7.23 144 | 176 | 6.41 13.7 | 16,5 | 9.82
Ambrosch and Kubinger [2010] | 5.81 | 7.14 | 22.6 | 2.61 | 3.33 | 253 | 979 | 155 | 257 | 5.08 | 11,5 | 15.0 | 125
Ttofis and Theocharides [2012] 448 | 6.04 | 12.7 | 6.01 | 7.47 | 182 | 21.5 | 28.1 | 28.8 17.1 | 259 | 25.8 | 16.8
Jin et al. [2010] 9.79 11.6 | 20.3 3.59 | 5.27 | 36.8 125 | 21.5 | 30.6 7.34 | 176 | 21.0 | 17.2
Shan et al. [2012] 9.49 11.1 | 36.0 | 7.10 | 8.65 | 41.7 169 | 254 | 40.6 106 | 20.2 | 283 | 21.3

BN

Nocc.(non-occluded regions) are the errors only for the non-occluded regions.

All (all regions) are the errors in all regions excluding borders of the image.

Disc (discontinuity) are the errors only for the regions near depth discontinuities.

The AVG column by which the table is sorted shows the average percentage of bad pixels over all twelve columns.

And their memory consumption limits the improvement of processing speed. Zhang
et al. [2011] adopts similar algorithm as ours but achieves only 12% processing speed
compared to ours. This is because we adopt several optimization methods to relieve
memory limitation to enable high-speed processing. Although GPU and DSP imple-
mentations achieve better processing speed than CPUs, they are far from real-time
performance for high resolution images.

The processing accuracy of the proposed stereo vision system is evaluated using the
Middlebury stereo database [Scharstein and Szeliski 2002]. We compute the quality
measure as the percentage of bad matching pixels between the computed disparity
map dc(z,y) and the ground truth map dr(z, y) using a threshold §; = 1.0 as indicated
in (7), where N is the total number of pixels. In addition to computing this statistic over
the whole image, we also focus on two different kinds of regions to support further anal-
ysis: non-occluded regions and regions near depth discontinuities. Fig. 15 compares the
disparity map of our proposed algorithm and state-of-the-art stereo implementations
on Middlebury datasets to give a visual indication of how well the methods perform.
Table III presents the quantitative performance of our method and those of other local
and global stereo methods.

B = %Z (Ide (z,y) = dr (z,y)| > 6a) ()

Our system achieves good results on Middlebury evaluation and ranks second in eval-
uated FPGA-based systems. Jin and Maruyama [2012a] can provide relatively high-
speed and accurate results for these datasets using a little more complex algorithm on
FPGA. However, as described previously, it cannot afford a disparity range larger than
60 due to resource limitation. Our system performs better than [Zhang et al. 2011],
which basically proposes a similar algorithm with ours, but adopts fixed vertical span
in building support region in order to reduce hardware overhead and realize pipeline
processing. In contrast, our proposed optimizing methods enable the full support of
adaptive region, leading to increased matching accuracy. Other work which delivers
more accurate results are all far from real-time processing at high resolution and large
disparity range images.
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Tsukuba Venus Teddy Cones
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Ground
truth

Proposed

Zhang et al.
[2011]

Jin et al.
[2012]

Fig. 15. Disparity map comparison of the proposed algorithm and two other implementations on Middle-
bury datasets of Tsukuba, Venus, Teddy and Cones

Compared to algorithms such as VariableCross[2009a] and [Zhang et al. 2009b], both
of which employ SAD and cross-based aggregation, our results on the Tsukuba image
pair are not competitive. The Tsukuba image pair contains very noisy and repetitive
regions near the lamp and the bookshelf in the background, which lead to ambigu-
ity in disparity selection when using Mini-Census, while pixel-based SAD can handle
this well. Though Mini-Census generally performs better, SAD sometimes provides
proper results where Mini-Census suffers. Since different matching cost such as SAD
is orthogonal to our aggregation schemes, they can be combined with our optimization
schemes to further improve performance.

7. CONCLUSION

Stereo vision is a fundamental domain in many computer vision applications. The ex-
tra processing dimension of depth estimation for this domain brings in a big challenge
of memory limitation. To address this challenge, we use a Mini-Census Adaptive Sup-
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port Region (MCADSR) stereo matching algorithm as a case study. Three optimization
methods, vertical-first aggregation, hybrid parallel processing, and hardware-friendly
integral image, are used to relieve the memory limitation of this domain. These meth-
ods also change the irregular operations of adaptive support algorithm into regular
ones and reduce operation amount using efficient data reuse. Due to the representa-
tive feature of the algorithm, these optimization methods are general and can be easily
adopted in other problems in this domain.

We also proposes an full pipelined FPGA based customizable system with the above
optimization methods. The combination of Mini-Census transformation and adaptive
support region makes the algorithm have an overall average error rate of 7.65%. Mean-
while, the full pipelined processing on FPGA brings in high-speed processing which can
process 47.6 fps (frames per second) and 129 fps for video of 1920 x 1080 resolution with
a large disparity range of 256 and video of 1024 x 768 resolution with a large disparity
range of 128 respectively.

Our future work will investigate run-time reconfigurable architecture for stereo vi-
sion domain to further reduce resource consumption and achieve more accurate re-
sults. We will also extend our optimization methods to other important applications in
stereo vision domain.
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