
Efficient Weighted Histogramming on GPUs with CUDA

Mo Xu, Ningyi Xu, Chunshui Zhao and Feng-Hsiung Hsu
Microsoft Research Asia, Beijing, China
v-moxu, ningyixu@microsoft.com

ABSTRACT
The histogram is a fundamental statistical tool that has been
extensively used in various domains. In data mining and ma-
chine learning applications, weighted histogram calculation
often serves as a key component in the processing of their
massive data sets. However, the atomic operation, which is
introduced to resolve the collisions in GPU-based parallel
histogramming with large number of bins, brings the over-
head of instruction serialization and limits the performance
and performance predictability. In this work, we present
a new method for histogramming on GPUs, which reduces
the collision intensity by rearranging the input, and pro-
vides predictable performance over data sets with different
statistics. Using the shared memory effectively, our method
shows improved performance over the state-of-the-art imple-
mentations. According to the number of bins and sparseness
of the values, we then propose a hybrid method which dy-
namically chooses the best implementation from traditional
methods and the new method. An overall speedup of 13x
is observed on a data set from a commercial search engine
when comparing with the CPU implementation.

Keywords
Histogram, GPU, CUDA, LambdaMART

1. INTRODUCTION
Histograms are extensively used in various domains, such
as imaging processing, machine learning and data mining.
They are estimates of the probability density of the data.
Different from the common histogram, a weighted histogram
accumulates the assigned weight of each input data points
to the corresponding bin. The calculation of weighted his-
togram often serves a key component in machine learning
and data mining applications such as face detection [6] and
ranking [4]. In boosting algorithms, the most widely used
weak learner is the binary classifier, whose threshold is of-
ten trained by calculating weighted histograms [13], taking
most of the running time. Our work is motivated by accel-

erating the LambdaMART ranking algorithm, which will be
introduced briefly in Section 2.1.

Recently, Graphic Processing Units (GPUs) are becoming an
important platform for general-purpose data parallel com-
puting [7]. Since modern GPU contains 512 or more cores
[5], it provides much greater computation capability and
bandwidth than CPU can provide.

GPU-based calculation of weighted histogram, especially with
large number of bins, is difficult [12] because the on-chip
shared memory is limited compared to the memory access
requirement of parallel threads. The floating-point weight,
unlike the integer value, cannot be compressed, making or-
dinary optimization trivial. One solution is that many con-
current threads fill in one histogram (rather than a same
number of histograms), and each uses atomic operations to
ensure the correctness. This method allows multiprocessors
accommodate enough threads simultaneously, and thus po-
tentially achieves peak performance when the overhead of
atomic operations is negligible. This overhead is minimized
when the data is uniformly distributed. In common cases,
atomic operations lead to serial executions, which may cause
notably performance drop.

In this paper, we present a new method to reduce the over-
head of atomic operations. The key idea of our method is to
create an extra buffer for each thread, then to rearrange the
sequence of inputs according to their value and the thread
index, so as to reduce collisions when finally updating the
bin counters in parallel. Our method outperforms previous
methods on the data that is not so uniformly distributed,
and achieves better performance predictability.

For histogram calculation with small number of bins, the
traditional method without atomic operations is effective.
We further use the register to increase the Instruction-Level
Parallelism (ILP), and achieve better performance than pre-
vious implementation. Specifically, loop unrolling gives an
extra 2x speedup. The optimization idea is built upon from
Volkov [14].

Since in data mining applications, the histogram calculation
with varies number of bins (in LambdaMART, from 2 to
1024) are often required, and data with all kind of distri-
bution is involved, we then present a hybrid method which
choose the best implementation according to the number of
bins and the collision intensity, which is known in advance.

This hybrid method is built upon the detailed performance
analysis of the three separate methods (two for large-number
of bins and one for small-number of bins), and provides the
best performance for real-world applications.

The contributions of this paper are:

• We present a new method for histogram calculation on
GPUs, which efficiently uses the shared memory, and
reduces the overhead of atomic operations.

• We optimize the traditional method by exploiting the
register on GPU, and achieve better performance than
previous implementation.

• We provide a hybrid method for real-world applica-
tions, which dynamically chooses the best implemen-
tation, and achieves the best performance.

The rest of this paper is organized as follows: we briefly in-
troduce the background of LambdaMART algorithm and the
Compute Unified Device Architecture (CUDA) in Section 2.
Then the previous work is reviewed in Section 3. Next, we
present the existing methods and the novel method and our
optimization in Section 4. Section 5 details the methodol-
ogy for our experiments of which the results can be found
in Section 6. Finally, Section 7 concludes the paper.

2. BACKGROUND
We first define our problem by introducing the algorithm.
Then we provide some basic knowledge about our program-
ming model and hardware platform, i.e. the CUDA and the
NVIDIA Fermi Architecture respectively.

2.1 LambdaMART Ranking algorithm
LambdaMART, which is a promising learning to rank al-
gorithm, combines MART (Multiple Additive Regression
Trees) and LambdaRank [2]. The training data is the feature
values (fij) and the relevance labels (li, such as bad, good,
excellent, etc.) of documents (di, URLs). The lambda (λi)
can be seen as the cost function of the MART [3]. In parti-
tioning each node of the regression tree, both the unweighted
histograms and the λ-weighted histograms of all features are
required to choose the most discriminative feature and the
threshold. After each regression tree is built, λ is recalcu-
lated and iteratively used as the weight of histograms of the
next tree. Experiments show that the histogram calculation
is the bottleneck of this algorithm, costing above 50% of the
total training time [12].

We summarize the features characterizing our problem as
follows: 1) many histograms (as many as the number of fea-
tures × the number of nodes) from one set of feature values
need to be recalculated many times (as many as the number
of regression trees) with only the λ updating. So if we put
the entire feature values on the GPU device memory, the
overhead of data-transfer from CPU to GPU will be trivial
compared to that of the intense histogram calculations. 2)
The range of feature values varies from 2 to 1024, supporting
binary features, discrete features and continuous features.
For continuous features, 1024 is an empirical number for pre-
cision (larger number of bins may cause over fitting). This

motivate us to investigate the performance under different
number of bins. 3) When calculate the weighted histogram,
along with every integer bin counter, there is one floating-
point weight need to be stored. This is the main reason why
previous optimization for histogram calculation is ineffective
for this application. All these characteristics applies to other
boosting-tree algorithms.

2.2 CUDA and the GPU architecture
We provide a quick overview of the concept, terminology
and basic optimizing strategy of the Compute Unified Device
Architecture (CUDA) and NVIDIA GPU architecture that
is used in this paper. Detailed information can be found
in [9]. A reader who is familiar with CUDA may skip this
subsection.

CUDA provides a general-purpose programming model for
GPUs. The kernel code, running on the GPU, is executed by
a number of threads, each having a unique id. Threads are
grouped into thread-blocks, enabling synchronization and
the use of a shared memory. All threads have their own reg-
ister, and share the device DRAM, called the global memory.

The GPU hardware is consist of an array of streaming multi-
processors, each executing one or more thread-block(s) con-
currently. The multiprocessor schedules threads as warps,
which is groups of typically 32 parallel threads within thread-
blocks, in an SIMD-manner. An on-chip shared memory
and a register file are available on each multiprocessor with
lower access latency than that of the global memory. How-
ever, the atomic operations on shared memory may cause
serialization, and result in a huge drop in performance.

To hide the memory latency, the GPU does not (entirely)
rely on caches, but instead switches to other active warps.
The ratio of the number of active warps per multiproces-
sor to the maximum number of possible active warps (48
in GTX580) is called occupancy, which is the metric of the
Thread-Level Parallelism (TLP) achieved by the hardware,
and is limited by the register and shared memory require-
ments. Another way to increase the parallelism so as to
further hide the latency is to exploit the Instruction-Level
Parallelism (ILP), which is a measure of how many of the
operations in the serial kernel that can be performed simul-
taneously.

3. RELATED WORK
Sharp implemented a decision tree and forest on the GPU
using Direct3D [12] and found that the aggregation of the
histograms on the GPU is comparatively slow. In their pro-
filing with GTX280, histogram calculation takes 96% of the
training time, while on CPU it takes 53%, which indicate the
difficulty of accelerating the weighted histogram calculation.
Previous work focuses on unweighted histogram calculation,
which is mostly used in imaging processing applications.

In CUDA Software Development Kit, Podlozhnyuk demon-
strated two approaches, one for 64-bin and the other for 256-
bin [10]. Both of them use shared memory to achieve efficient
data transfer. In the implementation of 64-bin histogram,
each thread holds a full histogram (64 counters) on shared
memory, and no atomic operation is introduced. To reduce
the size of shared memory used by a single thread, hence

to ensure necessary occupancy, Podlozhnyuk use single-byte
bin counters for each thread. In 256-bin histogram, each
warp (32 threads) has a full histogram in shared memory. In
this way, the collisions between warps (inter-warp collisions)
are avoided, while the collisions within a warp (intra-warp
collisions) are inevitable.

Shams and Kennedy presented two methods for histogram
calculation with a wide range of bins using CUDA [11]. One
method involves simulating a mutex (mutual exclusion) on
software for safe access to shared objects, since hardware
atomic operation is not supported by NVIDIA GPUs of com-
pute capability 1.0.1 The other method proposed by [11] is
to avoid collisions between parallel threads, similar to the
64-bin implementation in CUDA SDK, by reducing the size
of bin counters according to the number of bins, so as to
achieve necessary occupancy.

Brosh and Tam proposed a self-optimizing histogram algo-
rithm [1], which changes the bin size adaptively according
to the data distribution calculated in the first time.

Nugteren presented two method for predictable histogram
calculation on GPUs [8]. Considering the high correlation
between neighboring pixels in typical image data, Nugteren
reduced the amount of shared memory collisions by shuffling
the input throughput global memory. Besides, this work also
compares four collision-free 256-bin implementations with
different mappings of the histogram on the shared memory
to avoid bank conflict.

In sum, when dealing with the calculation of many-bin his-
togram on GPU, all mentioned studies reduce the shared
memory usage in either of these two ways: 1) using smaller
bin counters, or 2) parallel threads updating one single his-
togram. Since in weighted histogram calculation, an extra
floating point number (namely the λ in Section 2.1) accom-
panied with each bin counter should also be stored in the
shared memory, reducing the size of bin counters brings lit-
tle performance gain. Our new method focuses on reducing
the intensity of the collisions stemming from many threads
concurrently updating one single histogram.

4. IMPLEMENTATION METHODS
4.1 Overview
The algorithm of histogram calculation in LambdaMart is
described in Algorithm 1. Obviously, Algorithm 1 ismemory-
bandwidth limited since no complex arithmetic operations are
involved. Therefore, the most vital issue when mapping the
histogram algorithm to GPUs is the optimization for mem-
ory bandwidth. Note that the type of the input V alue may
be unsigned char or unsigned short, which depends on Nbins.
However, we constantly use unsigned int as global memory
fetch type to maximize the bandwidth utilization, and then
get the actual value by shift or and operation.

One straightforward way to calculate histogram is that each
thread updating its bin counters in the global memory di-
rectly. This method requires intensive random access to the

1In this work, we use GPUs of compute capability 2.0, which
support hardware atomic operation well.

Algorithm 1: Serial Histogram Calculation

Input: unsigned int V alue [i] [j], i = 1, 2, ..., Nfeature,
j = 1, 2, ..., Ndoc and float λ [j]

Output: unsigned int SumCount [i] [k] and float
Sumλ [i] [k], k = 1, 2, ..., Nbins

1 for i = 1; i ≤ Nfeature do
2 for k = 1; k ≤ Nbin do
3 SumCount [i] [k]=0;
4 Sumλ [i] [k]=0;

5 end
6 for j = 1; j ≤ Ndoc do
7 unsigned int k = value [i] [j];
8 //get the actual value k
9 float lambda = λ [i];

10 SumCount [i] [k]++;
11 Sumλ [i] [k]+=lambda;

12 end

13 end

global memory, which will cause dramatically decrease in
throughput [11].

Since shared memory has much higher bandwidth than global
memory does, we mainly discuss the techniques of how to
use shared memory as cache for higher throughput in next
subsections. Traditional mappings of histogram calculation
on GPUs can be categorized into two classes according to
the number of bins (the Nbin in Algorithm 1). For small-
Nbin histogram, collision-free method is efficient, which,
however, cannot deal with the cases when Nbin is large. For
large-Nbin cases, we must resort to atomic operations to
guarantee the correctness (we call it collision method). To
reduce the overhead of atomic operations, we then present
our new method (referred to as collision-reduced method).
Finally, for data mining applications, we present a hybrid
method, which is built upon the analysis of the three discrete
methods, and chooses the optimal implementation among
these three method according to Nbin and the data statis-
tic.

4.2 Collision-Free Method
4.2.1 Basic Implementation
In this method, each thread in parallel has its own histogram
in shared memory, thus collisions can be entirely avoided.
The implementation is quite straightforward. Each thread-
block processes one feature, and there are Nfeature blocks on
the GPU. Each thread fetches input data from global mem-
ory in coalesced way, and put it into the right bin counter
according to the data value, iteratively (see Figure 1, Step
1). Then, all histograms in one thread-block are summed
up, where each thread takes charge of one bin counter at a
time. Finally, the histogram is copied to global memory (see
Figure 1, Step 2). In following figures, white boxes denote
the storage in shared memory, grey boxes denote that in
global memory, and arrows mean parallel threads. Nthread

means the number of threads within one thread-block. For
simplicity, in Figure 1 we omit the λ accompanied with every
bin counter.

In this way, the coalesced access to the global memory can be

Nthread

Nbin

Ndoc

Nthread

Nbin

step1 step2

Figure 1: Collision-free method kernel

best achieved. To avoid the bank conflict in shared mem-
ory, when summing up the histograms, threads start in a
staggered way, as is shown in Figure 1, Step 2. Although by
the CUDA profiler we can clearly see that the bank conflict
is totally eliminated, there is no appreciable improvement
in performance. This is because the summing up operation
consumes far less time comparing with reading memory from
the global memory.

The major shortcoming of this method is that when the
number of bins increases, the number of threads that can si-
multaneously executing in one multiprocessor (NActiveThread)
will decrease dramatically. Thus the theoretical occupancy
will quickly become intolerably low. Due to the data-intensive
nature of this algorithm, the latency of memory fetch can
hardly be hidden in the kernel with such low occupancy.
Therefore, the performance will be rather poor in this con-
dition (Section 6.1.2).

Quantitatively, the size of one full histogram can be cal-
culated as Nbin × (sizeof(SumCount) + 4B). Given that
the type of SumCount is unsigned short, then the shared-
memory consumption by each thread is 6NbinB. Since the
total shared memory for each multiprocessor is 48kB, Nbin

NActiveThread must not be larger than 8k. And the larger
the Nbin, the smaller the NActiveThread, and thus the lower
occupancy (Nthread

1536
) that GPUs can achieve.

4.2.2 More Efficient Instruction Pipeline
The number of features (Nfeature) and the number of docu-
ments (Ndoc) affect the efficiency of the instruction pipeline
on GPUs: larger data size leads to more saturated pipelines.
We will illustrate this point in Section 6.1.1. In data mining
applications, the number of documents can be very large.
So if Nfeature is too small to occupy the entire device, (This
case is common when we use the hybrid method, which par-
titions the total features.) we can divide the documents
into several segments, and merge the sub-histograms after
getting the histograms of all these segments.

4.2.3 Exploiting Instruction-Level Parallelism
In this memory-intensive application, the latency of global
memory access can hardly be totally hidden by the Thread-

Level Parallelism (TLP), especially when the occupancy is
relatively low. So we further exploit the GPU registers to
achieve higher instruction-level parallelism. Specifically, we
add padding to the original input data, and then unroll the
loop manually (The “#pragmaunroll” does not bring any
performance gain). This single optimization gives us an ex-
tra 2x speedup (see Section 6.1.1). This optimization idea
was inspired by Volkov [14].

Note that the loop unrolling also leads to more usage of reg-
isters, and thus potentially limits the occupancy, especially
when Nbin is small and shared memory is not key resource.
So the degree of loop unrolling needs to be tuned carefully
to achieve the best performance. Detail result can be found
in Section 6.1.2.

4.3 Collision Method
When dealing with the histogram calculation with large num-
ber of bins, in order to achieve high occupancy, we need
to reduce the shared memory used by each thread. In this
method, many concurrent threads fill in one single histogram
using atomic operations. We illustrate this method by Fig-
ure 2. We also try loop unrolling, whose effects in this
method in more subtle, and is discussed in Section 6.2.1.
This is because in the collision method, the TLP can eas-
ily be achieved, and the real bottleneck is the overhead of
atomic operations. And the distribution and the sequence
of the input data affect the performance to a large degree,
as is shown in Section 6.2.3 and Section 6.2.4.

Nthread

Nbin

Ndoc

Nbin

step1 step2

Intense Collision

Figure 2: Collision method kernel

4.4 Collision-Reduced Method
4.4.1 Basic Implementation
In this subsection, we present our new method to reduce
the intensity of collisions among concurrent threads. The
key idea of our method is to create an extra buffer for each
thread, then using it to rearrange the sequence of inputs ac-
cording to their value and the thread index, so as to reduce
the collisions. We illustrate our method by Figure 3. Algo-
rithm 2 is the pseudo-code of the CUDA kernel, where tid
stands for threadIdx.x.

Apart from a full histogram shared by all threads in a thread-
block, each thread has two extra buffers
(BufferV alCount and BufferLambda (not shown in Fig-
ure 3 for simplicity)). The length of buffer is Nbuffer. As
is shown in the right upper corner of Figure 3, each unit

Algorithm 2: Collision-Reduced Histogram Kernel

1 gridDim.x = Nfeature × Ndoc
NbufferNwarp×32

2 blockDim.x = Nwarp × 32
Input: int Value[i][j] and float λ[j],
i=0, 1, ..., gridDim.x-1, j=0, 1, ..., blockDim.x-1
Output: int SumCount[i][k] and float Sumλ [i][k],
k=0, 2, ..., Nbins-1

3 shared int BufferValCount[Nbuffer][Nwarp × 32];
4 shared float BufferLambda[Nbuffer][Nwarp × 32];
5 // clear the buffer
6 for i=0; i < Nbuffer do
7 BufferValCount[i][tid] = 0;
8 BufferLambda[i][tid] = 0.0f;

9 end
10 // fill in the buffer (Step1.1)

11 for i=0; i < Nbuffer do
12 int key = Value[blockIdx.x][tid + i * blockDim.x];
13 float lambda = λ[tid + i * blockDim.x];
14 int pos =(key %Nbuffer + tid)%Nbuffer; // hash
15 int val = BufferValCount[pos][tid] >> 16;
16 int count = BufferValCount[pos][tid] & 0xFF;
17 while count>0 and key ̸=val do
18 pos = pos + 1; //another hash function
19 pos %= Nbuffer;
20 val = BufferValCount[pos][tid] >> 16;
21 count = BufferValCount[pos][tid] & 0xFF;

22 end
23 if count==0 then
24 BufferValCount[pos][tid] = key<<16 + 1;
25 else
26 BufferValCount[pos][tid] += 1;//(key==val)
27 end
28 BufferLambda[pos][tid] = lambda;

29 end
30 shared int HistCount[Nbin];
31 shared float HistLambda[Nbin];
32 // clear the histogram
33 for i=tid; i < Nbin; i+=blockDim.x do
34 HistCount[i] = 0;
35 HistLambda[i] = 0.0f;

36 end
37 // build the histogram (Step1.2)

38 for i=0; i < Nbuffer do
39 int bin = BufferValCount[i][tid] >>16;
40 int count = BufferValCount[i][tid] & 0xFF;
41 float lambda = BufferLambda[i][tid];
42 if count>0 then
43 atomicAdd(HistCount + bin, count);
44 atomicAdd(HistLambda + bin, lambda);

45 end

46 end
47 // copy to global memory (Step2)

48 for i = tid; i < Nbins; i+=blockDim.x do
49 SumCount[blockIdx.x][i] = HistCount[i];
50 SumΛ[blockIdx.x][i] = HistLambda[i];

51 end

Ndoc

Nbin

step2

Nthread

Nbin

Step1.1

Step1.2

Immediate

Buffer

Immediate

Buffer

CountValue

Less Collision

Figure 3: Collision-reduced method kernel

(4 Bytes) of BufferV alCount is divided into two 2-Byte
fields, one for the value fetched from the input data (re-
ferred to as value-field), and the other for the count of this
value (referred to as count-field). BufferLambda is used
for storing the λ.

In Step 1.1, each thread iteratively fills its intermediate
buffer according to the hash function:

index = (key%Nbuffer + threadIdx)%Nbuffer

where key is the value of input data fetched from the global
memory, and threadIdx is the index of the thread. If the
calculated index is empty, the value-field will be filled with
key, and the count-field will be set to 1. Otherwise, that is,
the position is occupied (identified by nonzero count-field),
if the key in thevalue-field equals to the input data, we will
simply increase the count-field by 1; If not (the hash-collision
occurs), we will recalculate the index using another hash
function, until an unoccupied slot is found. For simplicity,
we adopt the linear probing method as the another hash
function, that is, when hash-collision occurs, we just add 1
to the index.

Obviously, the buffer can reside up to Nbuffer different val-
ues, and the total number of fetched data (the sum of count-
fields) may be larger than Nbuffer. However, in order to
minimize the divergent warps, we limit iteration time be-
tween consecutive buffer flushes to Nbuffer, so as to en-
sure that there are always slots available for every input.
That means the Ndoc in this method need to be restricted
to Nbuffer × Nthread. Therefore, the output of this kernel
is actually several sub-histograms for each feature, and an-
other kernel for merge is needed. The merge kernel costs far
less time than the main kernel.

After the intermediate buffers are filled, we update the shared
histogram in parallel (Step 1.2). The manner of this step
is just like that of the Collision method, Step 1. But in
this time, the collisions intensity is much lower than that

in previous method. This is because that by Step 1.1, data
with the same key is placed in different row due to different
threadIdxs. Thus in Step 1.2, the concurrent threads are
less likely to update one single container.

The collision-reduced method performs more stable than the
collision method when the data is not so uniformly dis-
tributed. Besides, the sequence of the input data also in-
fluence the performance of these two method. This is be-
cause that on GPUs, it is actually the consecutive 32 threads
that are executed simultaneously, so collisions will not occur
when two documents with long distance have the same fea-
ture value. The collision-reduced method prefers the input
data with clustering characteristic (like 1, 1, 1, 1, 0, 0, 2,
...)than that is independently distributed (like 1, 0, 3, 2, 0,
5, 7, ...), since in this case the potentiality of the rearrange-
ment can be full played (see Section 6.2.4).

4.4.2 Data-Specific Optimization
For the latter two methods (collision method and collision-
reduced method), we can further reduce their collision inten-
sities if we know where most collisions comes from, which
is the case in our data-mining applications. Specifically,
since most document features in search engine data are zero
(which means most documents do not match the query), we
can skip the zeros when updating the histogram, and get
the total amount of zeros by subtracting other bin-counters
from the document size. This trick, which brings about 2x
speedup to the GPU programs (Section 6.2.5), however, is
not suitable for the CPU program, since the branches may
cause the whole pre-issued instruction pipeline being wasted.

4.5 Hybrid Method
The above three methods have their own advantages in dif-
ferent scenarios. Collision-free method can achieve peak
global memory bandwidth when Nbin is small. When Nbin

is large, the collision is inevitable. And collision-reduced
method is better than collision method when data is not
uniformly distributed. Since in data mining applications,
the statistic of data are diverse and the data can be either
uniformly distributed or not, three methods needs to be in-
tegrated for the best performance.

In our hybrid method, we first determine whether we use
the collision-free method, since Nbin for each feature is pre-
set. Next, as is mentioned in Section 2, histograms for one
set of data have to be recalculated for many times due to
the iterative nature of the boosting algorithm. Therefore,
we can choose from the collision method and collision-free
method by simply comparing the running time of them at
the first round (can be seen as preprocessing) with very low
cost. The method selection process can be explained by Ta-
ble 1. We will define the “small-Nbin” and the “large-Nbin”
by experimental results in Section 6. Since shared mem-
ory usage must be specified when compiling the kernel code,
we need build several kernels, each for one solution. The
method-selection information is organized as an array for
each kernel to find their corresponding features.

5. EXPERIMENT METHODOLOGY
This section provides basic methodology of our experiment,
including the test environment, the performance measure-
ment, the baseline, the experiment procedure and the data.

“sparse” feature “dense” feature
small Nbin collision-free method
large Nbin collision method collision-reduced

Method

Table 1: Method Selection

5.1 Environmental Setup
Our test platform includes Intel Xeon 2.40GHz CPU with
24GB RAM and NVIDIA GTX 580 GPU. The GPU device
specification is listed in Table 2. The operating system is
Windows 7 64-bit, and we write the code using C/C++ and
CUDA. Our code is compiled with the -O2 option. Using
CUDA SDK 4.0[developers.nvidia.com], the global memory
bandwidth achieved by test kernel is 142 GB/s.

Model NVIDIA GTX 580
of Multiprocessor 16

of cores per Multiprocessor 32
Global memory 1GB

Global memory bandwidth 192 GB/s
Shared memory per Multiprocessor 48kB
Max # of threads per Multiprocessor 1536

Table 2: Device Specification

5.2 Performance Measurement
The exact performance we want for histogram calculation is
the Document Throughput, which is defined as the number
of documents that are processed per second (Gdoc/s). It
can be used to compare with the performance of the CPU
implementation, which is listed in Section 5.3.

However, the common measurement for memory-bandwidth
limited GPU programs is the Data Throughput in GB/s [10]
[11]. So in Section 6, the performance is represented by the
data throughput rather than the document throughput. For
convenience, we list the conversion between these two mea-
surements in Table 3. For example, the feature whose value
is smaller than 16 is stored in one half-byte, and the 98.3
GB/s data throughput equals to 49.2 Gdoc/s. This data
organization, which aims at efficiently use the the memory
bandwidth, has been completed in prior, and is also applied
in the CPU program. The amount of processed data we
count is the amount of total feature values (the V alue ma-
trix in Algorithm 1), and does not include the λs. Since all
the λs form an array, and each element is read for Nfeature

times, the read of λs can be cached and shared by all thread-
blocks, and needs far less global memory bandwidth than the
read of feature values do.

Nbin Size of V alue 1(GB/s) means
2 ∼ 16 0.5 B 2 Gdoc/s

32 ∼ 256 1 B 1 Gdoc/s
256 ∼ 1024 2 B 0.5 Gdoc/s

Table 3: Measurement Conversion from Data
Throughput to Sample Throughput

Another important measurement for the bandwidth limited
kernel is the achieved Global Memory Throughput (achieved
GMT, in GB/s), which is an indicator of the GPU hard-

ware utilization. For example in the performance analy-
sis for the collision-free method (Section 6.1.2), whose bot-
tleneck is the global memory bandwidth, we will show the
achieved GMT to illustrate the effectiveness of our kernel.
We get the achieved GMT by NVIDIA Compute Visual Pro-
filer 4.0. The gap between the data throughput and the
achieved GMT stems from the read of λs and the write of
the histogram result.

The time (the denominator in these three measurements) is
the kernel running time. As is stated in Section 2.1, the over-
head of data transfer between host CPU and device GPU
through PCI-e bus can be considered separately since once
feature value is placed on GPU, histogram need to be cal-
culated many times, with only the λs updating.

5.3 Performance Baseline
With our single-thread CPU implementation, the document
throughput is about 0.28 Gdoc/s, 0.25 Gdoc/s and 0.3 Gdoc/s
for 0.5B, 1B and 2B feature value respectively, independent
of the exact number of bins. Multi-core CPU version can
achieve linear speedups.

Size of V alue Document Throughput Data Throughput
(Gdoc/s) (GB/s)

0.5 B 0.49 Gdoc/s 0.25GB/s
1 B 1.43 Gdoc/s 1.43GB/s
2 B 1.25 Gdoc/s 2.50GB/s

Table 4: CPU Performance for reference

It is difficult to compare our result with previous GPU im-
plementations directly, since in our application, the shared
memory usage is doubled due to the existence of λs. In-
stead, we compare our tuned kernel with the straightfor-
ward implementation to investigate the effectiveness of our
optimization.

5.4 Experimental Procedure and Data
Our experiments have two goals. First, we evaluate the effec-
tiveness of the our three separate implementations on GPUs.
Second, we use these performance data as a guide to the hy-
brid method. Specifically, we will complete a quantitative
version of Table 1.

The evaluation of the histogram calculation on GPUs is
complex since the performance potentially has to do with
the Nbin and the data. For small-Nbin histogramming (the
collision-free method), the performance is independent of
data, since all operations are predictable. First, we show
the tuning progress for a specific Nbin (namely 64) con-
sidering the optimization strategies such as loop-unrolling
and saturating the instruction pipeline. Then we give the
performance for the collision-free method with all possible
Nbin and corresponding configurations, while omitting the
exhaustive tuning progresses.

For large-Nbin histogramming, we need to consider the in-
put data when comparing the performances of the colli-
sion method and the collision-reduced method, since both
of the methods involve atomic operations, which brings un-
predictability to the performance. The exact characteristic

of input data that affects the GPU performance is its abil-
ity to cause the occurrence that concurrent threads updating
the same bin-counter. However, this characteristic is diffi-
cult to manipulate and is device-dependent, since the range
of concurrent threads is not confined to the threads in one
warp, but includes all the threads that are active simulta-
neously, which is determined at the runtime. So instead, we
use a more straightforward characteristic, i.e. the standard
deviation, to have a glimpse at the predictability of these
two methods.

Specifically, first we set Nbin to 1024, which is the maximum
number of bins required in our application. We tune the
two methods separately in Section 6.2.1 and Section 6.2.2
and use normal distributed data with changeable standard
deviation as input to investigate effect of data statistic in
Section 6.2.3. Then we use a set of real-world data, which
is web page features from a commercial search engine, to
further compare the effectiveness of these two methods in
Section 6.2.4. Finally we change the Nbin, and provide the
optimal configurations and performances in Section 6.2.5.

In the last, we propose the hybrid method, which can be
seen as a summary of the three separate methods, and give
its performance in Section 6.3.

6. EXPERIMENTAL RESULTS
6.1 Small-Nbin: Collision-Free Method
6.1.1 Tuning for 64-bin Collision-Free Method
Achieve better TLP and ILP: For 64-bin histogram,
the size of shared memory for one warp (32 threads) is
64 ∗ 32 ∗ (2B(bin counter) + 4B(λ)) = 12kB. So one multi-
processor can accommodate 48kB
/12kB = 4 warps, and thus the theoretical occupancy is
4/48 = 8.3%, which is too low to hide the latency of memory
access in this memory-intensive application. As is mentioned
in Section 4, we further use the GPU registers to achieve
better instruction level parallelism. We denote the degree
of manual loop unrolling as Nunroll. In Figure 4, the y-axis
is the measurement of performance (the data throughput;
higher is better) and the size of registers used by a thread.
The x-axis is Nunroll. We can see that the loop unrolling
brings up to 2.2x speedup over traditional GPU implemen-
tation. But over-unrolling (see when Nunroll is 32) leads to
performance drop due to the spilling of registers.

15.77

23.9

28

32.2

35.8

21.6

0

10

20

30

40

50

60

70

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32

R
e

g
is

te
rs

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Nunroll

Throughput(GB/s)

Registers/thread

Figure 4: Collision-Free Method, 64-bin, 100k doc-
uments, 1k features

Saturating instruction pipelines: Since the size of data
affects the effectiveness of instruction pipeline, we also in-
vestigate the influence of the grid size (i.e. the number of
thread-blocks, or Nfeature in Algorithm 1) and the load of
each thread (i.e the number of documents, or Ndocument in
Algorithm 1) on the throughput (Figure 5, Figure 6). We
can see that the pipeline becomes saturated when Ndocument

is larger than 100k and Nfeature is larger than 1k. Note that
the marks of x-axis in both Figure 5 and Figure 6 increases
exponentially.

18.2

23.6

28.7

32.2
33.7

34.9 36

0

5

10

15

20

25

30

35

40

2000 4000 8000 16000 32000 64000 128000

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Ndoc

Throughput (GB/s)

Figure 5: Collision-Free Method, 64-bin, 16 un-
rolling, 1k features

25.7
27.4

31.7

35 35.5

0

5

10

15

20

25

30

35

40

100 200 400 800 1600

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Nfeature

Throughput (GB/s)

Figure 6: Collision-Free Method, 64-bin, 16 un-
rolling, 100k documents

6.1.2 Performance for small-Nbin Collision-Free Method
Using a similar tuning process, we derived the best perfor-
mances under different Nbin in Figure 7. Both the data
throughput (the solid line) and the achieved global memory
(the dashed line) bandwidth are provided. We can see that
with the Nbin decreasing, the achieved GMT approaches to
144 GB/s, which is equal to the GMT of the memory copy
example kernel provided by CUDA SDK.

The optimal configuration and corresponding occupancy anal-
ysis is listed in Table 5. With Nbin decreasing, the limiter
of occupancy shift from the shared memory usage to the
register usage. It is because that when Nbin decreases, the
number of threads than can be concurrently executed in-
crease, but the consumption of registers by each thread re-
mains unchanged, given the degree of unrolling. So when
Nbin is large, we can use the register more aggressively by
loop unrolling to achieve higher ILP. In contrast, when Nbin

is small, with experiments we found that we should trade the
ILP for better occupancy (TLP), namely cut off the Nunroll.

Nbin Nunroll Registers SM1 Occupancy
/Thread /Warp (B) Limiter

2 1 19 384 Register
4 2 21 768 Register
8 4 29 1.5k SM
16 16 63 3k SM
32 16 63 6k SM
64 16 63 12k SM
128 16 63 24k SM
1 Shared Memory. Similarly hereinafter.

Table 5: Collision-Free Method, Optimal Configu-
ration

125
116.8

109.3

98.3

65.3

35.8

18

144 142.8 141

119.27

76

40

21

0

20

40

60

80

100

120

0

20

40

60

80

100

120

140

160

2 4 8 16 32 64 128

O
cc

u
p

a
n

cy
 (

%
)

D
a

ta
 T

h
ro

u
g

h
p

u
t

\
G

M
T

 (
G

B
/s

)

Nbin

GMT

Data Throughput (GB/s)

Occupancy (%)

Figure 7: Collision-Free Method, 1k features, 100k
documents

6.2 Large-Nbin: Collision Method and Collision-
Reduced Method

6.2.1 Tuning for 1024-bin Collision Method
In the collision method for 1024-bin histogram, the size of
shared memory for one full histogram (shared by all threads
in one thread-block) is 1024 ∗ (4B(bin counter)2 +4B(λ)) =
8kB. Thus one multiprocessor can reside 6 thread-blocks
concurrently. To achieve 100% occupancy (1536 threads
per stream multiprocessor), the number of threads in one
thread-block need to be larger than (1536 / 6 =) 256 (8
warps). We also try to use loop unrolling to further improve
the parallelism. As you can see in Figure 8, the effect of
loop unrolling is more subtle and complex than that in the
collision-free method. The reason is that in collision method,
we can easily achieve high TLP. So the slight benefit of ILP
improvement may be overwhelmed by the overhead such as
registers spilling. From figure 8 we can see that the optimal
performance is achieved when we set 8 warps per block, and
Nunroll = 1. Note that we use uniformly distributed input,
which is the best case scenario of the collision method, and
we achieve up to 45.8 GB/s data throughput.

To illustrate the bottleneck of the collision method, we fur-
ther use the degenerate distributed data (i.e all the input
elements are set to the same value), and get only 0.38 GB/s
data throughput, which is even lower than that of the CPU

2Since the finest-grained atomic operation supported by
CUDA 4.0 is 4Byte Add, we use the integer bin counter.

program. Then we replace the shared histogram atomicAdd
with common addition operation. In this way the serial
execution introduced by the atomic operation is removed,
but the result is incorrect. The modified kernel achieves
117 GB/s data throughput and 160 GB/s GMT. Therefore
we can safely conclude that the bottleneck of the collision
method is the overhead of atomic operation (more than two
order of magnitude drop in performance).

45.8 44.8 44

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8

D
a

ta
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Nunroll

16 warp / block

 8 warp / block

4 warp / block

2 warp / block

1 warp / block

Figure 8: Collision Method, 1k features, 100k doc-
uments

6.2.2 Tuning for 1024-bin Collision-Reduced Method
The tuning for the collision-reduced method aims at improv-
ing the occupancy while keeping enough work load. The
changeable parameters involved in this method include the
number of warps per thread-block (Nwarp) and the size of
the extra buffer (Nbuffer). For 1024-bin histogramming,
the kernel performs best when Nbuffer = 10 and Nwarp =
6. The size of shared memory used by one thread-block
is 32 ∗ Nwarp ∗ Nbuffer ∗ (4B(V alue + Count) + 4B(λ)) +
Nbin ∗ (4B3 + 4B(λ)) = 23kB. The achieved occupancy

is
6∗[48kB

23kB
]

48
= 25%, and for uniformly random data, the

throughput is 9.86 GB/s, which is far less than that of col-
lision method. But remember the input is uniformly dis-
tributed, favoring the collision method. for degenerate dis-
tributed data the throughput is 5.57 GB/s, 14 times faster
than that of the collision method.

6.2.3 Performance on Normal Distributed Data, 1024-
bin

To get a glimpse at the effects of the data characteristic, we
generate the input data with a independent normal distribu-
tion with 512-mean and σ-standard deviation (σ is change-
able). When σ = 0, the input is degenerated distributed,
and when σ = ∞ the input is uniformly distributed. In Fig-
ure 9, the x-axis is the σ of the input, and y-axis is the data
throughput and the histogram of the standard deviation of
the real-world data. We can see that the performances of
both the collision method and the collision-reduced method
improves with the increase of σ. When σ = 0, the data
throughput is 0.38GB/s and 5.57 GB/s for the collision
method and the collision-reduced method respectively. And
their throughput approaches to uniformly random case (i.e.
45.8 GB/s and 9.86 GB/s). The collision-reduced meth-
ods outperforms the collision method when σ < 10. Note

3ditto

that the real-world data is not independently gaussian dis-
tributed, so the input with large standard deviation does not
necessarily favor the collision method, which will be shown
later.

0

2

4

6

8

10

12

14

0 5 10 15 20

D
a

ta
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Standard Deviation

Collision Method (GB/s)

Collision-Reduced Method (GB/s)

Figure 9: Collision Method and the Collision-
reduced Method for Gaussian distributed data with
different standard deviation

6.2.4 Performance on the Real Data, 1024-bin
Figure 10 compares the collision method and the collision
free method for real-world data from commercial search en-
gine and also with Nbin = 1024. The x-axis is the feature in-
dex. The y-axis is the data throughput and standard devia-
tion of the data. For clarity, in Figure 10 we sort the features
according to their running time of the collision method. The
performance for a single feature is obtained by all thread-
blocks calculating the same feature. The collision-reduced
method outperforms the collision method for 80% of the
features, and above 50% features achieve about one order of
magnitude performance gain. The average performance can
be found in Section 6.2.5.

We can also see that for real data, the collision method
performs poor even when the σ of data is larger than 10.
This phenomenon has to do with the sequence of data, since
real data is not independent Gaussian distributed. Instead,
the feature values from search engines are more likely to be
clustered (not mixed up well). This characteristic poten-
tially takes full advantage of the data rearrangement in the
collision-reduced method.

0

50

100

150

200

250

300

350

400

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91 101 111 121 131

S
ta

n
ta

rd
 D

e
v

ia
ti

o
n

D
a

ta
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Feature Index

Collision Method

Collision-Reduced

Method

Standard Deviation

Figure 10: Comparison of the Collision Method and
the Collision-reduced Method for single features

6.2.5 Performance for large-Nbin on the Real Data
In practice, different thread-blocks process different features.
Figure 11 shows the data throughput of the collision method,

the collision method and their hybrid method with differ-
ent Nbin as dashed-border columns. An important charac-
teristic of the feature values is that the number of zeros
are large. Skipping the zeros when updating the shared
histogram will eliminate much collisions. We denote the
throughput of the zero-skipped collision method, the zero-
skipped collision-reduced method and their hybrid method
by solid-border columns. From Figure 11 we can see that for
real data (no zero-skipping), collision-reduced method out-
performs the collision method by a factor of 2 to 4.5, and
skipping zeros is more beneficial for the collision method.
The hybrid method gains 10% to 20% speedup compared to
the best homogeneous method. The optimal configuration
and corresponding occupancy is listed in Table 6.

15.5

14

12.5

9.4

0

2

4

6

8

10

12

14

16

18

128 256 512 1024

D
a

ta
 T

h
ro

u
g

h
p

u
t

Nbin

collision method

collision-reduced

method
hybrid method

collision method

(skip zero)
collision-reduced

method (skip zero)
hybrid method (skip

zero)

Figure 11: Collision Method and Collision-reduced
Method and their Hybrid Method in practice

Nbin
collision-reduced Method collision method

Nwarp Nbuffer Occupancy Nwarp

128 2 10 33.3 % 2
256 2 8 33.3 % 2
512 3 5 75 % 2
1024 6 10 25 % 4

Table 6: Collision-Reduced Method & Collision
Method, Optimal Configuration

6.3 Hybrid Method
Table 7 summarizes the performance under different Nbin.
The percentage is from the real data set from a commer-
cial search engine. When Nbin is from 2 to 128, we use
the collision-free method (denoted as 1), and when Nbin is
from 256 to 1024, we use the hybrid method of the collision
method and the collision-reduced method (denoted as 2).
The test of such hybrid method on this data set shows 13
GB/s data throughput, and gains 13x speedup compared to
the single thread CPU program (0.95 GB/s).

7. CONCLUSION
In this work, we propose a new method for weighted his-
togramming on GPUs using CUDA. It shows 2x speedup
over traditional method on data set from a commercial search
engine. We also optimize the traditional methods and pro-
pose a hybrid method which dynamically chooses the best
implementation for each input. Such a method benefits his-
togram calculation with both large and small number of bins
while preventing the worst case, and shows 13GB/s data
throughput and 13x speedup over single-core CPU imple-
mentation.

Nbin 2 4 8 16 32

DT1(GB/s) 125 116.8 109.3 98.3 65.3
Percentage (%) 6.9 0.1 6.4 4.3 1.0

Method 1 1 1 1 1

Nbin 64 128 256 512 1204
DT (GB/s) 35.8 18 14 12.5 9.4

Percentage (%) 1.7 15.4 02 5.8 58
Method 1 1 2 2 2

1 Data Throughput.
2 We get the performance by generating fake features
from 1024-bin data.

Table 7: Method Selection and Performance Sum-
mary

8. REFERENCES
[1] T. Brosch and R. Tarn. A self-optimizing histogram

algorithm for graphics card accelerated image
registration. In Medical Image Computing and
Computer Assisted Intervention (MICCAI) Grid
Workshop, pages 35–44, 2009.

[2] C. Burges. From ranknet to lambdarank to
lambdamart: An overview. Technical report, Technical
Report MSR-TR-2010-82, Microsoft Research, 2010.

[3] C. Burges, R. Ragno, and Q. Le. Learning to rank
with nonsmooth cost functions. Advances in neural
information processing systems, 19:193, 2007.

[4] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
The Journal of Machine Learning Research,
4:933–969, 2003.

[5] P. Glaskowsky. Nvidia fermi: The first complete gpu
computing architecture. NVIDIA Corp, 2009.

[6] A. Jörgensen. Adaboost and histograms for fast face
detection. 2006.

[7] J. Nickolls and W. Dally. The gpu computing era.
Micro, IEEE, 30(2):56–69, 2010.

[8] C. Nugteren, G. van den Braak, H. Corporaal, and
B. Mesman. High performance predictable
histogramming on gpus: exploring and evaluating
algorithm trade-offs. In Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics
Processing Units, page 1. ACM, 2011.

[9] C. Nvidia. Compute unified device architecture
programming guide. NVIDIA: Santa Clara, CA,
83:129, 2007.

[10] V. Podlozhnyuk. Histogram calculation in cuda.
NVIDIA Corporation White Paper, (November), 2007.

[11] R. Shams and R. Kennedy. Efficient histogram
algorithms for nvidia cuda compatible devices. In
International Conference on Signal Processing and
Communication Systems, 2007.

[12] T. Sharp. Implementing decision trees and forests on a
gpu. Computer Vision–ECCV 2008, pages 595–608,
2008.

[13] P. Viola and M. Jones. Robust real-time object
detection. International Journal of Computer Vision,
57(2):137–154, 2002.

[14] V. Volkov. Better performance at lower occupancy. In
GPU Technology Conference (GTC), 2010.

