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ABSTRACT
The sparse matrix solver is a critical component in circuit
simulators. Some researches have developed GPU-based LU
factorization approaches to accelerate the sparse solver. But
the performance of these solvers is constrained by the irregu-
larities of sparse matrices. This work investigates the nonze-
ro patterns and memory access patterns in sparse LU factor-
ization, and explores the common features to give guidelines
on the improvements of the GPU solvers. We further pro-
pose a crisscross blocked implementation on GPUs. The
proposed method attains average speedups of 1.68× com-
pared with the unblocked method and 2.2× compared with
4-threaded PARDISO, for circuit matrices.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Parallel algorithm-
s; J.6 [Computer-aided Engineering]: Computer-aided
design (CAD)

General Terms
Algorithms

Keywords
graphics processing unit (GPU); sparse LU factorization;
memory access pattern

1. INTRODUCTION
The sparse matrix solver for solving Ax = b is a criti-

cal component in Simulation Program with Integrated Cir-
cuit Emphasis (SPICE) [1]-based circuit simulators. Cir-
cuit matrices after post-layout extraction can easily reach a
dimension of several million, SPICE-based simulators may
take days or even weeks to perform time-domain simulation-
s. The sparse solver is repeated for thousands of times in a
time-domain simulation, as shown in Fig. 1, so it is the most
time-consuming step in post-layout simulations.
There are two important features of the sparse solver in

SPICE-based simulators. First, circuit matrices are highly
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sparse, asymmetric, and irregular. This feature makes that
Basic Linear Algebra Subroutines (BLAS) [2]-based solver-
s tend to perform poorly for circuit matrices [3], such as
SuperLU [4], PARDISO [5], etc. So KLU [3], which is spe-
cially designed for circuit simulation problems, does not u-
tilize BLAS. Second, during the iterations of a time-domain
simulation, although the values of matrix elements change,
the nonzero structure is fixed. This feature makes that only
the first LU factorization is performed with pivoting, subse-
quent LU factorizations can use the fixed pivoting order and
fixed structure of the LU factors obtained by the first fac-
torization [3]. A subsequent factorization without pivoting
is called a re-factorization.
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Figure 1: Flow of SPICE time-domain simulations.

Recently, a parallel sparse solver named NICSLU running
on multicore CPUs is developed for circuit simulation prob-
lems [6–8], and its GPU implementation is also proposed [9].
They have been proved to be efficient for circuit matrices.
However, as reported in [9], although the GPU implementa-
tion is faster than the 8-threaded CPU implementation, the
peak performance achieved by NVIDIA GTX580 is only 10
Giga floating-point operations per second (Gflop/s), which
is much smaller than the theoretic peak performance of N-
VIDIA GTX580 (200 Gflop/s for double-precision). Conse-
quently, there is still a large potential to further accelerate
the GPU solver. The challenge of GPU-based sparse LU
factorization is the irregularity. The irregular nonzero dis-
tribution leads to numerous indirect and irregular memory
access patterns, which greatly influences the performance on
GPUs. Consequently, it is important to analyze and opti-
mize the nonzero patterns and memory access patterns in



GPU-based sparse LU factorization. Therefore, we make
the following main contributions in this paper.

• Nonzero patterns in sparse LU factorization is investi-
gated by a theoretical analysis. Fill-ins are not evenly
distributed in the LU factors, the matrix will become
denser and denser during the factorization procedure.
This phenomenon prompts us to rethink the optimal
implementation of the sparse factorization implemen-
tation for circuit matrices.

• Memory access patterns in sparse LU factorization are
further analyzed by visualization methods. We find
that sparse LU factorization should be separated into
two parts to perform different optimization strategies.
The former has larger stride in memory access pattern-
s, but fewer memory requests; the latter has smaller
stride but more memory requests. These are common
characteristics in sparse LU factorization. Consequent-
ly, optimizing the two parts should have different fo-
cuses.

• We propose a crisscross blocked LU factorization ap-
proach which is suitable for GPUs. The proposed
blocked approach combines both sparse and dense al-
gorithms to take full advantage of the features of the
two parts. It is on average 1.68× faster than the un-
blocked method and 2.2× faster than 4-threaded PAR-
DISO, for circuit matrices.

2. RELATED WORK

2.1 Memory Analysis/Optimization on GPUs
Until now, there are not much work on analysis and op-

timization of memory access patterns on GPUs. Jang et
al. proposed an analytical model to analyze and optimize
memory access patterns on GPUs [10]. This work focused on
regular memory access patterns but paid little attention on
random patterns. Hugues et al. evaluated the performance
of various sparse matrix formats for sparse matrix-vector
multiplication (SpMV) on GPUs [11]. Che et al. proposed
a framework to optimize the efficiency of DRAM accesses
through memory layout remapping and index transforma-
tion [12], but the index transformation function was manu-
ally tried and found. A memory model for GPUs was pro-
posed [13], which focused on 2D block-based array represen-
tations and was only suitable for dense computing kernels.
An analytical method was proposed [14] to quantize the lo-
cality in memory access patterns. However, this method
could only get a score for an algorithm, but the details were
ignored.

2.2 Sparse Direct Solvers on GPUs
In recent years, some GPU-based direct solvers were pro-

posed [9, 15–19]. Among them, the left-looking Gilbert-
Peierls (G-P) algorithm [20] was mapped onto GPUs with-
out pivoting, which was suitable for circuit matrices [9].
PARDISO was also mapped onto GPUs [18], but the speedup
was only about 2× compared with a sequential CPU im-
plementation. Other approaches are all based on the su-
pernodal or multifrontal algorithm, which involve off-loading
the time-consuming dense kernels to GPUs by using CUD-
A BLAS (CUBLAS) [21]. CUBLAS-based approaches are
not suitable for circuit matrices because circuit matrices are
highly sparse and so are their LU factors. Parallel sparse

LU factorization on GPUs is more difficult than on CPUs,
because CPUs have large caches to handle irregular memory
access patterns and irregular control flows, but GPUs do not
have such features so the GPU performance is significantly
constrained by the irregular structure of the sparse matrices
and the irregular memory access patterns.

3. BACKGROUNDS

3.1 CSR Format
The compressed sparse row (CSR) format [22] is one of

the most widely used formats to store sparse matrices, as
illustrated in Fig. 2. Let n be the dimension of the sparse
matrix A, and nnz be the number of nonzeros in A. The
CSR format uses three arrays to store A: A_x, A_i, and A_p.
A_x is a floating-point array of length nnz, storing the values
of the nonzeros row by row; A_i is an integer array of length
nnz, storing the column index of each nonzero; A_p is an
integer array with length n + 1, storing the position of the
nonzero in A_i or A_x which is the first nonzero of a row. In
the following contents, we use MAT_x, MAT_i, and MAT_p to
represent the CSR arrays of the matrix named MAT.

Figure 2: Illustration of the CSR format.

3.2 Sparse LU Factorization for Circuit Sim-
ulation

GPU-based sparse LU factorization for circuit simulation
problems consists of three steps: preprocessing, numeric re-
factorization, and substitution [9]. The preprocessing step
performs row/column permutations to reduce fill-ins, fol-
lowed by a left-looking factorization algorithm [20] (with
numeric pivoting) to obtain the structure of L and U. These
two steps are performed on CPUs. Numeric re-factorization
is performed on GPUs and repeated for many times. As
shown in Section 1, re-factorizations use the fixed nonze-
ro structure and pivoting order obtained in preprocessing,
which avoids per-iteration changes to the matrix structure
and is suitable for GPU implementation.

Algorithm 1 shows the pseudo code of the row-based s-
parse numeric factorization algorithm. It is a transposed
version (without numeric pivoting) of the left-looking G-P
algorithm [20], so it can be called up-looking algorithm. Al-
gorithm 2 shows the C-like code for factorizing row i. In
this code, the CSR arrays of L and U do not contain the
diagonals. ldiag is the diagonal of L (the diagonal values
of U are all 1.0, which are not stored); x is a double-type
vector of length n.

4. NONZERO PATTERN ANALYSIS FOR S-
PARSE LU FACTORIZATION



Algorithm 1 Row-based sparse LU factorization algorithm

1: for i = 1 : n do
2: x=A(i, :);
3: for j = 1 : i − 1 do
4: x(j + 1 : n)− =x(j)×U(j, j + 1 : n);
5: end for
6: L(i, 1 : i) =x(1 : i);
7: U(i, i : n) =x(i : n)/x(i);
8: end for

Algorithm 2 Detailed code for factorizing row i

1: //copy row i of A into a dense vector x
2: for (j=A_p[i]; j<A_p[i+1]; ++j)
3: {
4: x[A_i[j]] = A_x[j];
5: }
6: //numeric accumulation from dependent rows
7: for (j=L_p[i]; j<L_p[i+1]; ++j)
8: {
9: id = L_i[j];
10: xj = x[id];
11: for (k=U_p[id]; k<U_p[id+1]; ++k)
12: {
13: x[U_i[k]] -= xj*U_x[k];
14: }
15: }
16: //storing factorization results
17: xj = x[i];
18: x[i] = 0.;
19: ldiag[i] = xj;
20: for (j=L_p[i]; j<L_p[i+1]; ++j)
21: {
22: id = L_i[j];
23: L_x[j] = x[id];
24: x[id] = 0.;
25: }
26: for (j=U_p[i]; j<U_p[i+1]; ++j)
27: {
28: id = U_i[j];
29: U_x[j] = x[id] / xj;
30: x[id] = 0.;
31: }

During sparse LU factorization, fill-ins are generated. The
distribution of fill-ins has large impact on memory access
patterns and consequently, the overall performance also strong-
ly depends on the nonzero patterns. In this section, we
theoretically analyze the characteristics of the nonzero pat-
terns in sparse LU factorization, and explore the common
characteristics, to further give guidelines on memory access
improvement.

4.1 Elimination Graph
For simplicity, only symmetric matrix is considered in this

section, but the method can also be extended to the asym-
metric case by using the concept of bipartite graph [23]. A
symmetric n-by-n matrix A can be represented by an undi-
rected graph G0 = (V0, E0), where V0 = {1, 2, · · · , n}. An
edge (i, j) is in E0 if and only if aij ̸= 0(i ̸= j).
The LU factorization process can be represented by a se-

ries of elimination graphs [24]: G1(V1, E1), G2(V2, E2), · · · ,
Gn(Vn, En), where Gk(Vk, Ek)(k = 1, 2, · · · , n) describes
the nonzero pattern of the right-bottom (n− k)-by-(n− k)
submatrix still to be factorized after the first k pivots have
been chosen and eliminated. At step k, the kth pivot pk is s-
elected from Vk−1. Nodes (in Vk−1) adjacent to pk become a
clique (a fully connected subgraph) by adding edges between
these nodes. pk and edges that are linked to pk are removed
from Gk−1 to generate Gk. The edges added correspond to
fill-ins generated at the kth step of LU factorization. Let

ADJk(v) denote the set of nodes adjacent to node v in Gk.
The kth step is described by [24]

Vk = Vk−1\{pk} (1)

Ek = [Ek−1 ∪ (ADJk−1(pk)×ADJk−1(pk))] ∩ (Vk × Vk)
(2)

An example is illustrated in Fig. 3.
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Figure 3: Eliminating node 1. The set of nodes {2, 3, 4} be-
comes a clique. Filled grids represent original nonzeros.“X”
represents fill-ins caused by eliminating node 1. The remain-
ing graph describes the nonzero pattern of the right-bottom
4-by-4 matrix.

4.2 Nonzero Pattern Analysis for Sparse LU
Factorization

In this subsection, we analyze the nonzero patterns of s-
parse LU factorization based on a theoretical average anal-
ysis.

pk

... ADJk-1(pk)

dk nodes

... n-k-dk nodes

Gk-1

Figure 4: Illustration of the kth step.

Consider the kth step, before pk is eliminated, the average
degree of all nodes in Gk−1 is

avg degk−1 =
2|Ek−1|
|Vk−1|

=
2|Ek−1|
n− k + 1

(3)

When pk is eliminated, the edges linked to pk are also e-
liminated, and ADJk−1(pk) becomes a clique. We want to
calculate how many edges are added in this process. Let dk
be the degree of pk.

At step k, the nodes Vk−1 can be partitioned into three
parts: pk, ADJk−1(pk), and other nodes, as shown in Fig. 4.
Consider a node v ∈ ADJk−1(pk), except for the edge linked

to pk, it has on average
2|Ek−1|
n−k+1

− 1 edges linked to nodes in

ADJk−1(pk) and the other n − k − dk nodes. The average
number of edges that link node v and nodes in ADJk−1(pk)
is (

2|Ek−1|
n− k + 1

− 1

)
× dk − 1

n− k
(4)

Consequently, the average number of edges in ADJk−1(pk)



is (before it becomes a clique)(
2|Ek−1|
n− k + 1

− 1

)
× dk − 1

n− k
× dk

2
(5)

When ADJk−1(pk) becomes a clique, the number of edges is
dk(dk−1)

2
. Consequently, the increment of the average num-

ber of edges in ADJk−1(pk) is

∆k = dk(dk−1)
2

−
(

2|Ek−1|
n−k+1

− 1
)
× dk−1

n−k
× dk

2

= dk(dk−1)
2

[
1− 1

n−k

(
2|Ek−1|
n−k+1

− 1
)] (6)

Consequently, when step k is finished, the average number
of edges in Gk is

|Ek| = |Ek−1| − dk +∆k (7)

Based on Eq. (7) and (6), |Ek| can be represented by a
function of |Ek−1| and dk.
In an actual factorization, a node with the minimum de-

gree is usually selected as the pivot at each step to minimize
fill-ins, this is so called the minimum degree ordering algo-
rithm [24]. Regardless of the pivot selection strategy, all the
dk values are implementation related, and depend on the
specific matrix. For the purpose of simple and theoretical
analysis, we assume that each dk is related to the average
degree of all nodes at the corresponding step, i.e.

dk = α× avg degk−1 =
2α|Ek−1|
n− k + 1

(8)

where α is a constant.
Combining Eq. (7), (6) and (8), we get

|Ek| = −4α2|Ek−1|3

(n−k)(n−k+1)3
+

[2α+2α2(n−k+1)]|Ek−1|2

(n−k)(n−k+1)2

+
[(n−k)2−(3α−1)(n−k)−α]|Ek−1|

(n−k)(n−k+1)

(9)

Eq. (9) is a recursion formula of |Ek|. It is quite difficult to
deduce a general term formula of |Ek|, maybe impossible.
The density of an n-by-n sparse matrix is defined as the

ratio of the nonzero count to n2. When step k is finished, the
density of the (n− k)-by-(n− k) submatrix to be factorized
is

density(k) = min

{
2|Ek|+ Vk

V 2
k

, 1

}
= min

{
2|Ek|+ n− k

(n− k)2
, 1

}
(10)

Fig. 5 shows the trends of the density, under different α
values. For comparison, a real example of sparse LU fac-
torization is shown in Fig. 6, which shows a similar trend
compared with Fig. 5.
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Figure 5: Trends of the density. |V0| = n = 10000, |E0| =
15000.

0.001

0.01

0.1

1

0 10000 20000 30000 40000

D
en

si
ty

 

step k 

Figure 6: Trends of the density for factorizing onetone1
(36057×36057).

4.3 Summary of This Section
As a conclusion of the above discussions and results, we

make an important observation that during the process of
sparse LU factorization, the remaining submatrix will gen-
erally become denser and denser, and finally it becomes near
fully dense or even fully dense. Thus, the nonzero distribu-
tion is irregular in sparse LU factorization.
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Figure 7: An example that does not fit the conclusion and
its corresponding elimination graph.

Note that the above theoretical analysis is not a strict
proof, since the above conclusion is not true for any matrix.
One can simply verify that the matrix shown in Fig. 7 does
not fit the conclusion, since it does not generate any fill-ins
during LU factorization by using the natural pivoting order
(i.e. 1, 2, · · · ). Besides, matrices that can be permuted to
a banded shape do not fit the conclusion either. However,
our target is circuit simulation and these special cases do not
exist in circuit simulation problems. The conclusion is based
on a theoretical average analysis, which can stand for general
cases. Anyhow, the conclusion prompts us to rethink what
the optimal implementation of the sparse LU factorization
algorithm is.

5. MEMORY ACCESS ANALYSIS FOR S-
PARSE LU FACTORIZATION

In this section, the memory access patterns in sparse LU
factorization are analyzed by proposed memory request dis-
tribution (MemReqDist) and memory access stride distri-
bution (MemStrdDist). The two concepts are proposed to
visualize the features of memory access patterns. All the
following analysis is machine-independent, we attempt to
show the intrinsic characteristics and expose the common
characteristics.

5.1 Memory Request Distribution
We attempt to visualize the distribution of memory re-

quests on the matrix plane, to show the number of memory
requests at each position of the matrix. To achieve this
goal, we calculate the number of memory requests at each
nonzero position. Take x[U_i[k]] -= xj*U_x[k] (line 13 of
Algorithm 2) as an example, there are four memory request-
s: one read operation for U_x[k] at row id (id is in line 9 of
Algorithm 2) column U i(k); one read operation for U_i[k]



at row id column U i(k); one read operation and one write
operation for x[U_i[k]], both at row i column U i[k].
Using this method, the number of memory requests at

each nonzero position can be calculated, then the matrix
plane is partitioned into T × T tiles, the average number
of memory requests in each tile is calculated. We call this
distribution MemReqDist. An example of the MemReqDist
is shown in Fig. 8 (for onetone1), using 60×60 tiles.

Figure 8: MemReqDist of onetone1.

5.2 Memory Access Stride Distribution
For GPU kernels, contiguous memory access addresses

lead to more coalesced access patterns, which can greatly
reduce the number of memory transactions [25]. MemStrd-
Dist describes the contiguity of memory access addresses.
The smaller the stride is, the more contiguous the memory
access addresses are.
The memory access stride comes from the data conversion

from CSR arrays to dense arrays or from dense arrays to
CSR arrays. Take x[A_i[j]] = A_x[j] (line 4 of Algorith-
m 2) as an example, for the read operations of A_x[j] and
A_i[j], the memory access addresses are contiguous with
index j. However, for the write operation of x[A_i[j]],
the access addresses are not contiguous, because the indexes
A_i[j] are not contiguous.
For a general case, memory accesses can be written as

X[index(j)], where X is an array stored in the off-chip mem-
ory and index is a function of an induction variable j. We
define stride of accesses to X is

stride(j) = d
dj
index(j)− 1

= index(j + 1)− index(j)− 1
(11)

The average stride of all the memory accesses in a range
r:

AvgStride(r) =
1

N

∑
loop∈LOOP

∑
j∈INDEX(loop)

stride(j)

(12)
where LOOP denotes all the loops in the range r, INDEX(loop)
denotes the index set of loop loop, and N is the total number
of memory requests in the range. A range can be a piece of
kernel execution time, or a region on the matrix plane.
Like the MemReqDist, the MemStrdDist shows the aver-

age stride in each tile on the matrix plane. An example of
the MemStrdDist is shown in Fig. 9 (for onetone1), using
60×60 tiles.

5.3 Summary of This Section
This section analyzes the impact of the irregular nonzero

patterns on the memory access patterns. The above discus-
sion only uses an example of onetone1, some other figures
are shown at http://nicslu.weebly.com/special.html. We do

Figure 9: MemStrdDist of onetone1.

see similar pictures for these sparse matrices. From the anal-
ysis, some unique characteristics of sparse LU factorization
are obtained.

From Fig. 8, the positions that is near the diagonal and
the bottom/right borders have many memory requests; es-
pecially at the right-bottom corner, it has abundant memory
requests. In contrast, the memory access stride is very low
at the right-bottom corner but higher at other positions.
This situation reveals that at the right-bottom corner, the
nonzeros are much denser than at other positions, which is
also caused by the unevenly distributed nonzeros.

The above conclusion suggests us that sparse LU factor-
ization should be separated into two parts to implement op-
timization strategies. Since the right-bottom corner has a
dense block, this block should be factorized individually us-
ing dense algorithms rather than sparse algorithms; and for
the rest of the matrix, sparse algorithms are still suitable.

6. MEMORY ACCESS OPTIMIZATION AND
EXPERIMENTAL RESULTS

6.1 Experiment Setup
The experiments are implemented on an NVIDIA GTX580

GPU, which has a peak performance of 200 Gflop/s (for
double-precision). The GPU code is programmed with CU-
DA (compute capability 2.0) [25]. The proposed approach
is compared with PARDISO [5], which is executed on an i7-
3770K CPU (4 cores). Seventeen matrices from University
of Florida Sparse Matrix Collection [26] are used to evaluate
our approaches.

6.2 Crisscross Blocked LU Factorization
The findings in Section 4 and Section 5 reveal that in s-

parse LU factorization, the right-bottom corner has a dense
block, which has smaller memory access stride and more
memory requests than other positions. The dense block
should be factorized individually to reduce memory request-
s. Consequently, a blocked LU factorization algorithm [27] is
used. Matrix A is divided into 4 blocks and the LU factors
are also divided:

A =

[
A11 A12

A21 A22

]
=

[
L11

L21 L22

] [
U11 U12

U22

]
(13)

Since the matrix is divided into fixed 4 blocks, we call this
algorithm crisscross blocked LU factorization. The factor-



ization process is like this:

A11 = L11U11

L21 = A21U
−1
11

U12 = L−1
11 A12

S = A22 − L21U12

S = L22U22

(14)

L21 = A21U
−1
11 and U12 = L−1

11 A12 need to explicitly cal-
culate the sparse inverses of L and U, which is expensive to
be implemented on both CPUs and GPUs. We propose an
equivalent algorithm that is suitable for GPU implementa-
tion, as shown in Fig. 10.

A21

L1

U1

A22

A1

L21
L22

U22

Figure 10: Blocked LU factorization that is suitable for GPU
implementation.

Then the factorization process is like this:

A1 = L1U1

L21 = A21U1(:, 1 : p)−1

S = A22 − L21U1(:, p : n)
S = L22U22

(15)

where p is the division point, U1(:, 1 : p) is the part of U1

that is with all rows and columns 1∼ p. The first step
(A1 = L1U1) is performed by the row-based up-looking
algorithm from row 1 to row p, we call it partial factoriza-
tion (ParFact). The second step (L21 = A21U1(:, 1 : p)−1)
can be also calculated by a up-looking-like algorithm, as
shown in Algorithm 3, we call it complement factorization
(ComFact). The last two steps are called sparse multiplica-
tion (SpMul) and dense factorization (DenFact). The dense
block is factorized by a CPU/GPU hybrid method which is
similar to an existing method [28].

Algorithm 3 Solving L21 = A21U1(:, 1 : p)−1.

1: for i = p : n do
2: x = A21(i − p, :);
3: for j = 1 : p do
4: x(j + 1 : p)− = x(j) × U1(j, j + 1 : p);
5: end for
6: L21(i − p, 1 : p) = x(1 : p);
7: end for

Please note the differences between our approach and the
existing supernodal or multifrontal algorithms. Those algo-
rithms gather nonzeros to dense subblocks according to the
specific nonzero distribution. Different matrices lead to dif-
ferent implementations. They cannot explore common fea-
tures. In contrast, our work explores the common features in
sparse LU factorization, which are independent with specific
matrices.

6.2.1 Selection of the Division Point
The performance of the crisscross blocked method greatly

depends on the division point. Apparently, we should make
the right-bottom block as large as possible on the condition
that dense LU factorization has much larger Gflop/s than
the sparse algorithm, especially for GPU implementation.

On the other hand, larger right-bottom block leads to more
explicit zeros filled in the block, which increases computa-
tions. So there is a tradeoff to choose the division point. In
the following, we propose a simple but effective method to
select the optimal division point.
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For sparse LU factorization, we find that the achieved
GPU performance has an approximate logarithmic relation
with the number of floating-point operations (flop), as shown
in Fig. 11. The fitted function is

sparse performance(flop) = 2.535× log10(Mflop)− 1.468
(16)
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Figure 12: Performance of dense LU factorization on NVIDI-
A GTX580 (double-precision).

The performance of dense LU factorization on NVIDIA
GTX580 is shown in Fig. 12. The performance can be fitted
by a logarithmic function as follows.

dense performance(k) = 31.93× log2(k)−
k

138.23
− 243.92

(17)
where k is the dimension of the dense matrix.

The predicted factorization time can be expressed as

predicted factorization time =
sparse flop(p)

sparse performance(flop)
+ dense flop(n−p)

dense performance(n−p)

(18)

where sparse flop(p) is the number of flop of the sparse parts
with division point p, which is obtained from the structure
of L and U, and dense flop(k) is the number of flop of dense
LU factorization with dimension k, which is calculated by

dense flop(k) =
2

3
k3 − 1

2
k2 − 1

6
k (19)

A simple exhaustive method on Eq. (18) can find the op-
timal division point for each matrix. This method can be
also implemented on other platforms by re-fitting Eq. (16)
and (17).



Table 1: Comparison between unblocked and blocked LU factorization.

Matrix factorization time Gflop/s bandwidth (GB/s) speedup speedup vs. dense block padding %a

unblocked blocked unblocked blocked unblocked blocked PARDISO dimension

circuit matrices
asic 100k 0.273 0.235 4.07 4.73 57.2 66.4 1.16 0.79 1280 23.5
asic 100ks 0.166 0.094 8.38 14.86 117.6 208.6 1.77 1.01 1280 28.0
asic 320ks 0.168 0.168 8.13 8.13 114.2 114.2 1.00 3.51 256 98.9
asic 680ks 0.150 0.079 6.11 11.65 85.9 163.7 1.91 69.80 1408 38.3

ckt11752 dc 1 0.058 0.052 5.26 5.85 74.1 82.4 1.11 1.00 768 39.9
g2 circuit 1.094 0.778 9.17 12.89 128.6 180.8 1.41 0.47 2304 32.7
onetone1 0.163 0.065 8.24 20.54 115.6 288.1 2.49 2.22 1664 35.8
onetone2 0.045 0.026 4.42 7.49 62.3 105.4 1.69 2.02 1280 63.2
twotone 0.983 0.383 11.05 28.35 154.8 397.3 2.57 2.89 3584 40.3

average 1.68 2.20b

non-circuit matrices
zhao1 0.420 0.232 8.68 15.72 121.9 220.8 1.81 0.38 2048 36.9
sme3dc 1.403 1.107 7.92 10.03 111.2 140.9 1.27 0.39 2048 29.8
xenon1 2.034 1.561 10.38 13.53 145.7 189.8 1.30 0.21 2944 37.0

denormal 0.501 0.396 10.01 12.67 140.8 178.3 1.27 0.52 2048 39.5
thermomech dm 0.260 0.257 7.29 7.37 103.3 104.4 1.01 0.72 896 45.1
thermomech dk 0.970 0.850 7.88 8.99 111.0 126.6 1.14 0.34 1792 44.5
thermomech tc 0.157 0.148 6.01 6.38 85.1 90.4 1.06 0.66 896 45.1

helm2d03 3.704 2.650 7.56 10.56 106.1 148.3 1.40 0.18 2432 18.8
average 1.28 0.42

a percentage of the explicit zeros filled in the right-bottom dense block
b this value is the geometric mean, other average values are the arithmetic mean.

6.2.2 Experimental Results
Table 1 shows the performance of the proposed blocked

LU factorization algorithm, for both circuit matrices and
non-circuit matrices. The blocked approach is compared
with the unblocked GPU implementation [9] and the multi-
threaded solver PARDISO [5] (using 4 threads).
For circuit matrices, the blocked approach attains 68%

performance gain compared with the unblocked approach.
In addition, the blocked GPU implementation is on aver-
age 2.2× faster than 4-threaded PARDISO. Consequently,
the proposed blocked LU factorization approach on GPUs
is efficient for circuit matrices.
For non-circuit matrices, though the blocked approach is

also faster than the unblocked approach, it is much slower
than 4-threaded PARDISO. PARDISO is supernode-based,
which uses BLAS to compute dense subblocks during sparse
LU factorization, and non-circuit sparse matrices are gener-
ally denser than circuit matrices, so PARDISO is efficient
for non-circuit sparse matrices.
The comparison between circuit matrices and non-circuit

matrices reveals that for circuit matrices, since they are too
sparse to form dense subblocks, dense kernel-based algo-
rithms, such as PARDISO, are inefficient. However, we have
proved there is still a dense block in the right-bottom corner
of circuit matrices, and the dense block should use dense
algorithms and other parts should use sparse algorithms.
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Figure 13: Gflop/s and bandwidth of each step in blocked
LU factorization, for onetone1.

Fig. 13 shows Gflop/s and bandwidth of each step in
blocked LU factorization, for onetone1. It shows that the
dense LU factorization step has much higher Gflop/s and

bandwidth than other sparse steps on GPUs. The achieved
memory bandwidth of dense LU factorization achieves more
than 1000 GB/s, which greatly exceeds the theoretic peak
bandwidth of the global memory of NVIDIA GTX580 (192.4
GB/s). This is mainly because of the shared memory used
in dense LU factorization. The results reveal that the pro-
posed blocked LU factorization greatly improves the memo-
ry performance and increases the overall performance on G-
PUs. The performance of dense LU factorization is 70∼100
Gflop/s for different matrices, which achieves about half of
the peak performance of NVIDIA GTX580 (200 Gflop/s).
The overall performance can be further increased if the per-
formance of dense LU factorization can be further increased,
since the performance of dense LU factorization is still far
away from the peak performance of NVIDIA GTX580.

Figure 14: MemReqDists of unblocked and blocked LU fac-
torization, for onetone1.

Fig. 14 shows the MemReqDists of unblocked and blocked
LU factorization, for onetone1. It reveals that the number
of memory requests is reduced in the right-bottom block
when it is factorized using dense algorithm. In addition, the
memory access stride is exactly 0 in the right-bottom block,
since there is no CSR accesses in dense LU factorization.

7. CONCLUSIONS
The sparse matrix solver is critical in circuit simulators.

The performance of existing GPU implementations is con-
strained by the irregularities of sparse matrices. This work



analyzed the irregular nonzero patterns and irregular mem-
ory access patterns in sparse LU factorization and explored
the common features. Based on the analysis conclusions, a
crisscross blocked implementation was proposed on GPUs.
The proposed approach is on average 1.68× faster than the
unblocked method and 2.2× faster than 4-threaded PAR-
DISO, for circuit matrices.

Acknowledgements
This work was supported by 973 project 2013CB329000, Na-
tional Science and Technology Major Project (2011ZX01035-
001-001-002, 2013ZX03003013-003) and National Natural Sci-
ence Foundation of China (No.61373026, 61261160501, 61028006),
Tsinghua University Initiative Scientific Research Program,
and Tsinghua National Laboratory for Information Science
and Technology.

8. REFERENCES
[1] L. W. Nagel. SPICE 2: A computer program to

stimulate semiconductor circuits. PhD thesis,
University of California, Berkeley, 1975.

[2] J. J. Dongarra, Jermey Du Cruz, Sven Hammerling,
and I. S. Duff. Algorithm 679: A set of level 3 basic
linear algebra subprograms: model implementation
and test programs. ACM Trans. Math. Softw.,
16(1):18–28, March 1990.

[3] Timothy A. Davis and Ekanathan
Palamadai Natarajan. Algorithm 907: KLU, A Direct
Sparse Solver for Circuit Simulation Problems. ACM
Trans. Math. Softw., 37(3):36:1–36:17, September
2010.

[4] James W. Demmel, John R. Gilbert, and Xiaoye S. Li.
An Asynchronous Parallel Supernodal Algorithm for
Sparse Gaussian Elimination. SIAM J. Matrix Anal.
Appl., 20(4):915–952, July 1999.

[5] Olaf Schenk and Klaus Gärtner. Solving unsymmetric
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