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Abstract—The sparse matrix solver has become the bottleneck
in a Simulation Program with Integrated Circuit Emphasis circuit
simulator. It is difficult to parallelize the sparse matrix solver
because of the high data dependence during the numerical LU
factorization. In this brief, a parallel LU factorization algorithm
is developed on shared-memory computers with multicore central
processing units, based on KLU algorithms. An Elimination Sched-
uler (EScheduler) is proposed to represent the data dependence
during the LU factorization. Based on the EScheduler, the parallel
tasks are scheduled in two modes to achieve a high level of concur-
rence, i.e., cluster mode and pipeline mode. The experimental re-
sults on 26 circuit matrices reveal that the developed algorithm can
achieve speedup of 1.18–4.55× (on geometric average), as com-
pared with KLU, with 1–8 threads. The result analysis indicates
that for different data dependence, different parallel strategies
should be dynamically selected to obtain optimal performance.

Index Terms—Circuit simulation, Elimination Scheduler
(EScheduler), parallel LU factorization.

I. INTRODUCTION

THE Simulation Program with Integrated Circuit Emphasis
(SPICE) [1] circuit simulator developed by the University

of California, Berkeley is widely deployed for verifications of
integrated circuits (ICs). With the growing complexity of the
very large scale integration at nanoscale, the sparse matrix
solver (A�x = �b) has become the bottleneck [2], since it is re-
peated in every Newton–Raphson iteration during the transient
analysis, and the circuit matrices of postlayout simulation can
even reach a dimension of millions. The traditional SPICE
circuit simulator has become inefficient in providing accurate
verifications for IC designs. At the same time, the recent
advance in the underlying hardware by multicore CPUs has
unleashed the power and possibility for rethinking of the circuit
simulation algorithms. Consequently, there is an emerging need
to develop efficient parallel algorithms inside the SPICE engine
in order to reduce the design cost and design cycle, particularly
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during postlayout verifications. Thereby, the acceleration for
solving A�x = �b has become an interest for developing fast
SPICE-like simulators.

There are two categories of methods to solve A�x = �b, i.e.,
iterative methods [3] and direct methods [4]. As iterative
approach requires precondition in each iteration during the
Newton–Raphson iterations, its advantage is unclear for circuit
simulation. The direct method by sparse LU factorization is
still widely used in modern circuit simulators. One typical
LU factorization has three steps, i.e., 1) preordering/symbolic
factorization; 2) numerical factorization; and 3) right-hand
solving. Among these, the first step performs column/row per-
mutations to increase the stability and reduce fill-ins; the second
step performs numerical factor operations for lower triangular
matrix L and upper triangular matrix U (i.e., A = LU ); and the
last step solves the triangular equations L�y = �b and U�x = �y.
In the SPICE simulation flow, although the entry values of the
matrix vary during the iterations, the nonzero pattern remains
unchanged. Consequently, the preordering/symbolic factoriza-
tion can be performed only once; the bottleneck becomes the
numeric factorization step.

In this brief, in order to accelerate circuit simulation, a
column-level parallel sparse LU factorization algorithm is de-
veloped on multicore CPUs. The more fine-grained parallelism
is suitable for a field-programmable gate array (FPGA) but not
a CPU. The contributions of this brief can be summarized as
follows.

• The concept of EScheduler is introduced to represent data
dependence. Compared with Elimination Tree (ETree)
used in SuperLU_MT [5], our approach can represent data
dependence in a more convenient fashion.

• Two parallel task scheduling methods are introduced,
i.e., cluster and pipeline modes. The two modes are dy-
namically selected during the numeric LU factorization,
according to the different structures of the EScheduler.
Therefore, the parallel tasks in numerical factorization can
be effectively scheduled.

The rest of this brief is organized as follow. We review the
related work in Section II. The proposed parallel LU factor-
ization algorithm is illustrated in Section III. The experimen-
tal results and analysis are presented in Section IV. Finally,
Section V concludes this brief.

II. RELATED WORK

Research on LU factorization has been active for decades,
and there are some popular software implementations. SuperLU
package includes three versions, i.e., the sequential version [6],
the multithread version SuperLU_MT [5], and SuperLU_DIST
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Fig. 1. Left-looking G–P algorithm-based numeric factorization without
partial pivoting.

[7] for distributed memory. SuperLU incorporates Supernode
in Gilbert–Peierls (G–P) left-looking algorithm [8] to enhance
its capability when computing dense blocks. However, because
of the high sparsity of circuit matrices, it is hard to form
supernodes in circuit simulation. Therefore, in KLU [9], block
triangular form (BTF) is adopted directly based on G–P left-
looking algorithm without Supernode. UMFPACK [10], which
is integrated in MATLAB, and MUMPS [11] are based on a
multifrontal algorithm [12]. In PARDISO [13], the left–right-
looking algorithm [14] is developed.

Recently, several approaches have been developed on recon-
figurable devices [2], [15], [16]. The scalability to large-scale
circuits is still limited by FPGA on-chip resources.

Among all the software implementations of LU factoriza-
tion, the parallel versions do not dominate; the primary chal-
lenge is lack of efficient data dependence analysis and parallel
strategies. In this brief, we develop an EScheduler-based data
dependence analysis; furthermore, different parallel patterns
are studied according to the EScheduler to reduce the parallel
overheads. To evaluate the performance on circuit matrices,
our algorithm is compared with KLU (optimized for circuit
simulation problems) [9] and SuperLU_MT (a general-purpose
parallel sparse matrix solver) [5].

III. PARALLEL LU FACTORIZATION ALGORITHM

A. Sequential LU Factorization Algorithm

The sequential LU factorization for circuit simulation is
introduced first. Our preprocessing step consists of three op-
erations, i.e., 1) HSL_MC64 algorithm [17] to ensure numeric
stability, 2) approximate minimum degree algorithm [18] to
reduce fill-ins, and 3) G–P algorithm-based prefactorization
(a complete numeric factorization with partial pivoting) [8] to
calculate the symbolic structure of L and U . The preprocessing
step is performed only once in circuit simulation; after this, a
fixed symbolic structure of the LU factors is obtained. In the
numeric factorization (which is repeated for many times in the
iterations in circuit simulation), the left-looking G–P numeric
factorization (without partial pivoting) is performed based on
the symbolic structure. As shown in Fig. 1(a), the left-looking
G–P numeric algorithm (without partial pivoting) factorizes
matrix A by sequentially processing each column k in two
steps, i.e., 1) solving a lower triangular system Lx = b, where
b = A(:, k) and 2) storing x in to U and L (with normalization).
As shown in Fig. 1(b), the numeric factorization of column

k refers to the data in some previous columns {j|U(j, k) �=
0, j < k}. In other words, column k depends on column j, if
U(j,k) �= 0(j < k). Given that the symbolic factorization is
already performed in the preprocessing step, the column-level
data dependence can be extracted from the structure of U .

B. EScheduler Definition

Based on the above discussion, the primary data dependence
during sparse LU factorization is the column-level data depen-
dence. In this brief, a column-level parallelism is exploited.
First, we define an EScheduler to represent the column-level
data dependence, and then, the parallel tasks are scheduled by
the EScheduler.

In SuperLU_MT, an ETree [5], [19] is constructed from the
symmetric matrix AT A or AT + A to illustrate the data de-
pendence. However, it introduces much redundant data depen-
dence. In order to describe the data dependence more exactly,
an EScheduler is proposed in this brief based on the Elimination
Graph (EGraph).
EGraph Definition: Given the structure of U after the

symbolic factorization, EGraph is built from U . It
is a directed acyclic graph GE(V,E), where V =
{1, 2, . . . , n} (node set) corresponds to all the columns
of A and E = {(j, k)|U(j, k) �= 0, k = 1, 2, . . . , n, j <
k} (edge set), and e = (j, k) ∈ E represents an edge from
j to k. In the following text, “node” and “column” are
equivalent. The edges in the EGraph represent the column-
level data dependence during the numeric LU factorization.
To explore some commonness from the EGraph, we define
the level of each node in the EGraph.

Level Definition: Given the EGraph, the level of each node
is the length of the longest path from any “source node”
to the node itself, if there is a path connecting the source
node and itself. “Source node” means the node that has
no incoming edges.Based on the definition of level, we
categorize all the n nodes into different levels, and then,
we obtain the EScheduler.

EScheduler Definition: EScheduler is a table S(V,LV ), in
which V = {1, 2, . . . , n} corresponds to the nodes in the
EGraph, and LV = {level(k)|1 ≤ k ≤ n}, where level(k)
represents the level of a node k.

The EScheduler is directly calculated from the symbolic
factorization result of U , i.e.,

level(k) = max (−1, level(j1), level(j2), . . .) + 1 (1)

where j1, j2, . . . are row indexes of all off-diagonal nonzeros in
column k of U (i.e., U(j1, k) �= 0 and U(j2, k) �= 0, . . .).

The above definitions indicate that the nodes in the same
level are independent. From the definitions, although we do
not know the exact data dependence from the EScheduler,
it is sufficient to implement the column-level parallelism on
multicore CPUs.

C. EScheduler-Based Parallel Task Scheduling

Take Fig. 2(c) as an example, the EScheduler has two pri-
mary structures, i.e., in levels 0–1, there are many nodes in each
level, whereas in levels 2–4, each level has very few nodes.
In the former structure, since the nodes in the same level are
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Fig. 2. Example of upper triangular matrix U with its corresponding EGraph and EScheduler.

Fig. 3. Overall flow of the EScheduler-based parallel task scheduling.

completely independent, they can be factorized in parallel; we
call this parallel strategy cluster mode. In the latter structure,
we use another parallel strategy that exploits the parallelism
between dependent levels called pipeline mode. We set a
threshold Nth, which is defined as the node number in one level,
to differentiate cluster mode levels from pipeline mode levels.
Nth = 1 is adopted in this example.

Fig. 3 shows the overall flow of the EScheduler-based paral-
lel task scheduling, where Lstart and Lstop denote the start and
stop levels, respectively, corresponding to the current parallel
mode in the EScheduler. For the above example, first, the
parallel mode is set to the cluster mode since there are four
nodes in level 0, and then, we get Lstart = 0 and Lstop = 1.
All the columns in levels 0–1 are factorized level by level
through the cluster mode. In the next iteration, the parallel
mode is switched to the pipeline mode, and then, Lstart = 2
and Lstop = 4. All the columns in levels 2–4 are factorized in
parallel through the pipeline mode. After two iterations, all the
columns are factorized, and the task scheduling flow ends.

1) Parallelism in the Cluster Mode: As aforementioned, the
nodes in the same level are independent. In the cluster mode,
all the levels in [Lstart, Lstop] will be processed level by level.
In each level L, nodes are allocated to different threads (nodes
assigned to one thread are regarded as a cluster), and the load
balance is achieved by equalizing the node number in each
cluster. Node-level synchronization is not needed since the
nodes in one level are independent, which reduces bulk of
the synchronization time. We wait for all the threads to finish

Fig. 4. Pipeline mode parallelism.

factorizing the nodes in level L, and then, nodes in the next level
will be processed by the same approach. Fig. 2(c) shows an
example of node allocation to two threads in the cluster mode.

2) Parallelism in the Pipeline Mode: In the pipeline mode,
each level has very few nodes; therefore, the dependence among
nodes is much stronger since these nodes are usually located in
different levels. However, even for dependent columns, we can
still factorize them in parallel.

Take the case in Fig. 4 for example, currently two threads are
factorizing columns t and k (t < k) simultaneously. Column
k depends on column t and some other columns i1, i2, . . ..
Assume that columns i1, i2, . . . have been already factorized
in the cluster mode or the previous pipeline mode. While
processing column k, column k can be first updated by the
finished columns i1, i2, . . . (corresponding to the dotted line
in Fig. 4). When it needs to touch column t, it will wait
until column t is finished (if currently column t is already
finished, then no wait happens); after this, column k is updated
by column t, corresponding to the solid line (at this moment,
the thread that just factorized column t is now factorizing
another unfinished column, which is similar to a pipeline). To
make a general definition of the pipeline mode, during the
factorization of the kth column, we use the off-diagonal
nonzeros in U(:,k) to synchronize the factorization. In
other words, the EGraph is used to synchronize the pipeline
mode parallelism. Therefore, the pipeline mode parallelism is
a node-level synchronization algorithm.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Setup and Results

The experiments are implemented by C on a Linux server
with two Xeon5670 CPUs (12 cores in total) and 24-GB
random access memory. Twenty-six circuit matrices from the
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TABLE I
RESULTS OF OUR ALGORITHM, AS COMPARED WITH KLU AND SUPERLU_MT

University of Florida Sparse Matrix Collection [20] are used
to evaluate our algorithm. We also test KLU (with the use of
klu_refactor function but not klu_factor) and SuperLU_MT,
which are considered as the baseline for comparison. KLU and
SuperLU_MT are implemented with their default configura-
tions. We define two types of speedups, i.e., the pure speedup
is defined as the speedup compared with KLU, and the relative
speedup is defined as the speedup compared with the sequential
version of our proposed algorithm.

Table I shows the speedup of the proposed parallel algorithm
compared with KLU, and Table II shows the relative speedup
of large matrices (N > 10K). It indicates that, for most circuit
matrices, our parallel LU factorization algorithm can achieve
stable acceleration with the multithread parallelism. In ad-
dition, we get better performance than SuperLU_MT since
SuperLU_MT fails on many large matrices (see “−−” in
Table I), and the number of fill-ins is much larger than our
algorithm and KLU.

B. Result Analysis

1) Synchronization Overhead: For small matrices (N <
5K), the speedup values keep low and do not obviously in-
crease or even decrease with more threads. Because the factor-
ization operations of small matrices consume little time, thread
operations such as the thread synchronization consume a large
part of the total runtime.

2) Impact of the Fill-Ins: For some matrices, we get very
high speedup values. This is because of the preprocessing
step, i.e., KLU uses BTF, by default. Our algorithm, however,

TABLE II
RELATIVE SPEEDUP, COMPARISON AMONG DIFFERENT PARALLEL

MODES (P = 4), AND EScheduler INFORMATION

does not use BTF. Table I shows the number of nonzeros
in L + U after factorization. For some matrices, the fill-ins
have big differences between our implementation and KLU,
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such as onetone1, onetone2, and rajat30. However, the relative
speedup still keeps stable, as shown in Table II.

3) Comparison Among Different Parallel Modes: Table II
shows the comparison among the combined cluster mode and
pipeline mode (i.e., the proposed algorithm, combined mode in
short), the pure cluster mode (Mode_C), and the pure pipeline
mode (Mode_P), with four threads. All the values reported
in Table II are relative speedups. The combined mode is
much better than both pure cluster mode and pure pipeline
mode. Another phenomenon is that the pure pipeline mode has
the similar trend with the combined mode, whereas the pure
cluster mode is extremely terrible. To explain this, we show
the EScheduler information in the last two columns of Table II.
The nodes (columns) computed by cluster mode account for
more than 97% of the total nodes, but the levels computed by
cluster mode only account for about 5% of the total levels. It
means that the levels computed by pipeline mode occupy a large
part and form a long chain in the EGraph and the EScheduler.
Since the pipeline mode has much more synchronization over-
head than the cluster mode, the bottleneck of the parallel task
scheduling flow is the pipeline mode. Therefore, the overall
performance is mainly determined by the pipeline mode. The
conclusion is that the two structures of the EScheduler dra-
matically differ; therefore, different parallel strategies should
be utilized and dynamically selected to fit the different data
dependence.

4) Consideration of Scalability and Matrix Characteristic:
Tables I and II show that our parallel LU factorization algo-
rithm works well for most of the circuit matrices. Since we
do not have a platform with more cores, we cannot get the
actual results with more threads. The performance with more
cores mainly depends on the shape of the EGraph and the
EScheduler, the synchronization overhead, and the memory
bandwidth: 1) the shape of the EGraph and the EScheduler
represents the data dependence and the matrix characteristics.
If the data dependence is weaker, the EGraph will be wider
and shorter and have less edges. When the nodes computed by
cluster mode become more, the performance will be better since
the cluster mode has less synchronization overhead; 2) since the
pipeline mode is a node-level synchronization algorithm, the
synchronization overhead will increase with more threads and
then affect the performance. If the problem size also becomes
larger, the computational time will be much more than the
synchronization time, and vice versa. This is why we get poor
performance for small matrices; and 3) if more threads are
utilized, the memory bandwidth will become a big bottleneck
since all the threads fetch lots of data from the memory simul-
taneously. Combining with the distributed approach may be a
potential solution for this challenge.

The size of the circuit matrices we used is up to five million,
which is larger than the available test results of other software
[5], [6], [9]–[11], [13] and FPGA implementations [2], [15],
[16]. Our algorithm can be scaled to bigger problem sizes.

V. CONCLUSION

The sparse matrix solver becomes the bottleneck in fast
SPICE-like simulators. In this brief, we have proposed an
EScheduler to analyze data dependence and task scheduling,
and then, a parallel LU factorization algorithm is developed on

multicore CPUs. To improve parallel scalability, we have pro-
posed two scheduling methods, i.e., cluster mode and pipeline
mode, which are dynamically configured during the numeric
factorization based on the EScheduler. The experimental results
on 26 circuit matrices show that the proposed algorithm can
achieve speedup of 1.18–4.55× on geometric average com-
pared with KLU, with 1–8 threads. Our performance is also
better than SuperLU_MT. We analyze the structures of the
EScheduler and conclude that, for different data dependence,
different parallel strategies should be dynamically selected.

In the future, we will consider multiple levels of parallel
granularities in LU factorization. Furthermore, we will consider
building a performance model to evaluate our algorithm and
study the load balancing of multiple threads.
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