
GPU-Accelerated Sparse LU Factorization for
Circuit Simulation with Performance Modeling

Xiaoming Chen, Student Member, IEEE, Ling Ren, Yu Wang,Member, IEEE, and

Huazhong Yang, Senior Member, IEEE

Abstract—The sparse matrix solver by LU factorization is a serious bottleneck in Simulation Program with Integrated Circuit Emphasis

(SPICE)-based circuit simulators. The state-of-the-art Graphics Processing Units (GPU) have numerous cores sharing the same

memory, provide attractive memory bandwidth and compute capability, and support massive thread-level parallelism, so GPUs can

potentially accelerate the sparse solver in circuit simulators. In this paper, an efficient GPU-based sparse solver for circuit problems is

proposed. We develop a hybrid parallel LU factorization approach combining task-level and data-level parallelism on GPUs. Work

partitioning, number of active thread groups, and memory access patterns are optimized based on the GPU architecture. Experiments

show that the proposed LU factorization approach on NVIDIA GTX580 attains an average speedup of 7.02� (geometric mean)

compared with sequential PARDISO, and 1.55� compared with 16-threaded PARDISO. We also investigate bottlenecks of the

proposed approach by a parametric performance model. The performance of the sparse LU factorization on GPUs is constrained by

the global memory bandwidth, so the performance can be further improved by future GPUs with larger memory bandwidth.

Index Terms—Graphics processing unit, parallel sparse LU factorization, circuit simulation, performance model

Ç

1 INTRODUCTION

THE Simulation Program with Integrated Circuit Empha-
sis (SPICE) [1] is the most widely used circuit simula-

tion kernel for transistor-level simulation in IC design and
verification. In recent years, the rapid development of very
large scale integrations (VLSI) presents great challenges to
the performance of SPICE-based simulators. In modern
VLSIs, circuit matrices after post-layout extraction can eas-
ily reach a dimension of several million. Traditional SPICE-
based simulators may take days or even weeks to perform
transient simulations. There are two bottlenecks in a
SPICE-based simulator: the sparse matrix solver by LU
factorization and model evaluation. The two steps are
repeated for thousands of rounds in a transient simulation,
as shown in Fig. 1.

Parallelization of model evaluation is straightforward,
but the sparse solver is difficult to parallelize because of the
strong data dependence during LU factorization, the irregu-
lar structure of circuit matrices, and the low computation-
to-memory ratio in sparse LU factorization. To accelerate
the sparse solver in SPICE-based simulators, some parallel
software solvers, such as ShyLU [2] and NICSLU [3], [4],
[5], are developed. They have been proved efficient for cir-
cuit matrices on multicore CPUs.

In the last decade, state-of-the-art Graphics Processing
Units (GPU) have been proved useful in many scientific
computing fields. GPUs have hundreds of cores, large regis-
ter files, and high memory bandwidth, etc. Collectively,
these computing and memory resources provide a massive
thread-level parallelism. Thus, GPUs potentially provide a
better solution than multicore CPUs to accelerate SPICE-
based circuit simulators. There have been some studies on
GPU-based model evaluation [6], [7], [8]. Although some
direct sparse solvers which are based on multifrontal [9] or
supernodal algorithms have been developed on GPUs [10],
[11], [12], [13], [14], [15], currently there is no work on GPU-
based direct solver targeted at circuit matrices. Circuit
matrices are quite different from matrices from other appli-
cations. Circuit matrices are highly asymmetric and sparse,
so multifrontal and supernodal solvers are proved to per-
form poorly [16]. Therefore, there raises a natural question
whether solvers targeted at circuit matrices can be acceler-
ated by GPUs, and how we can map a sparse solver from
multicore architectures to manycore architectures. In this
paper we develop a parallel sparse solver on GPUs and
experiments prove that it is efficient for circuit problems.
This paper is extended from our conference paper [17]. This
paper presents more results and develops a performance
model compared with [17]. We make the following contri-
butions in this paper.

� A GPU-based sparse solver for circuit problems is
developed, which is based on parallel LU numeric
factorization without pivoting. Different from the
existing GPU-based direct solvers, our GPU solver
does not use dense kernels. This feature makes our
solver be suitable for circuit matrices. More parallel-
ism is explored for the manycore architecture
of GPUs. Task-level parallelism is proposed in
CPU-version NICSLU [3], [4], [5], to perform an

� X. Chen, Y. Wang and H. Yang are with the Department of Electronic
Engineering, Tsinghua National Laboratory for Information Science and
Technology, Tsinghua University, Beijing, China.
E-mail: chenxm05@mails.tsinghua.edu.cn, yu-wang@tsinghua.edu.cn,
yanghz@tsinghua.edu.cn.

� L. Ren is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139.
E-mail: renling@mit.edu.

Manuscript received 16 Sept. 2013; revised 15 Jan. 2014; accepted 26 Feb.
2014. date of publication 17 Mar. 2014; date of current version 6 Feb. 2015.
Recommended for acceptance by F. Mueller.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2312199

786 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

inter-vector parallel algorithm, which is not suffi-
cient for the thousands of threads running concur-
rently on a GPU, so intra-vector parallelism is also
exposed on GPUs. Therefore, the GPU implementa-
tion is a hybrid approach combining both task-level
and data-level parallelism. The implementation is
optimized based on the GPU architecture.

� We present a parametric performance model to ana-
lyze the bottlenecks of the proposed GPU-based LU
factorization. We investigate the relation between
the achieved GPU performance and the GPU param-
eters using the proposed model. Experimental
results indicate that the performance of the proposed
sparse LU factorization on GPUs is constrained by
the global memory bandwidth of GPUs. The perfor-
mance model is universal and can also be used for
other GPU applications.

The rest of the paper is organized as follows. Section 2
shows some related work. Some backgrounds are intro-
duced in Section 3. Section 4 presents the proposed GPU-
based sparse LU factorization approach and optimization
strategies in detail. We show the experimental results
and analysis in Section 5. A parametric performance
model is developed in Section 6. Finally Section 7 con-
cludes the paper.

2 RELATED WORK

There are many LU factorization-based sparse solvers
developed on CPUs. SuperLU [18] incorporates superno-
des in the Gilbert-Peierls (G-P) left-looking algorithm
[19], and the Basic Linear Algebra Subroutines (BLAS)
[20] library is used to compute dense subblocks in
supernodes to enhance the compute capability. Another
solver PARDISO [21] also utilizes supernodes. However,
it is hard to form large supernodes in highly sparse
matrices such as circuit matrices. Hence KLU [16] which
is specially targeted at circuit matrices, directly adopts
the G-P left-looking algorithm without supernodes. KLU
is generally faster than BLAS-based sequential solvers for
circuit matrices [16]. SuperLU and PARDISO have paral-
lel packages, but KLU doesn’t. NICSLU is a parallel

version of the G-P left-looking algorithm, and it works
efficiently for circuit matrices on multicore machines [3],
[4], [5].

GPU-based dense LU factorization has been studied in
[25], [26], [27], [28], which all belong to the MAGMA project
[29]. The performance of these approaches is very promis-
ing, up to 80 percent of the GPU’s theoretic peak perfor-
mance [26]. NVIDIA has developed Compute Unified
Device Architecture (CUDA)-based BLAS library for accel-
erating dense linear algebra computing [30].

In recent years, some researches have developed
sparse direct solvers on GPUs [10], [11], [12], [13], [14],
[15]. PARDISO is mapped onto NVIDIA GPUs using sin-
gle-precision floating-point kernels [10]. It uses the
CUBLAS kernels to compute dense subblocks on GPUs.
Other approaches [11], [12], [13], [14], [15] are all based
on the multifrontal algorithm [9], and they all use dense
kernels to compute dense subblocks during sparse LU
factorization. We summarize these GPU-based direct
solvers in Table 1. CHOLMOD [31], which is a Cholesky
factorization-based direct solver, now can be accelerated
by CUDA BLAS too. These GPU solvers all involve off-
loading the time-consuming dense kernels to GPUs in
order to improve the overall performance, so they are
suitable for matrices which are denser than circuit matri-
ces but may not be suitable for highly sparse matrices. To
our knowledge, currently there is no published work on
GPU-based direct solver for circuit matrices without
using BLAS.

3 BACKGROUNDS

This section briefly introduces some backgrounds about the
left-looking algorithm, the two-mode scheduling algorithm
in NICSLU, the NVIDIA GPU architecture, and the CUDA
runtime model.

3.1 Left-Looking Algorithm

The pseudo code of the sparse left-looking algorithm [19]
(without pivoting) is shown in Algorithm 1. This algo-
rithm factorizes a matrix by processing columns in
sequence. When factorizing column i, some columns on
the left side will be used to update column i (i.e., data
dependence). The dependence is determined by the struc-
ture of U . The columns that column i depends on are
fj : Uðj; iÞ 6¼ 0; j < ig. The left-looking algorithm is well
suited for cache-based and shared-memory machines

Fig. 1. Flow of SPICE-based transient simulation.

TABLE 1
Summary of Existing GPU-Based Direct Sparse Solvers

CHEN ET AL.: GPU-ACCELERATED SPARSE LU FACTORIZATION FOR CIRCUIT SIMULATIONWITH PERFORMANCE MODELING 787

because it writes less data to main memory, compared
with the right-looking algorithm.

3.2 Two-Mode Scheduling in NICSLU

Based on the dependence analysis in the previous section,
the dependence between columns are described by a direct
acyclic graph (DAG) [4], as shown in Fig. 2. The DAG is fur-
ther partitioned into different levels. A two-mode schedul-
ing algorithm combining cluster mode and pipeline mode is
proposed in NICSLU [3], [4], [5] to perform a parallel LU
factorization algorithm. Cluster mode is used for levels that
have many columns. These levels are processed in sequence
but columns in one level are processed in parallel. For each
level, columns are evenly assigned to work threads. Pipeline
mode is used for the rest of levels that have fewer columns
in each level. These levels with dependence are computed
concurrently by a pipeline-like algorithm. The proposed
GPU-based sparse LU factorization approach is based on
the two-mode scheduling algorithm. The details of the two
modes can be found in [4].

3.3 GPU Architecture and CUDA Runtime Model

A rough diagram of the NVIDIA GPU architecture [32] is
shown in Fig. 3. A GPU consists of some streaming multi-
processors (SM), and each SM is composed of many stream-
ing processors (SP), L1 cache, shared memory, and some
special functional units. In NVIDIA Fermi architecture,

each SM has 32 SPs; in the latest Kepler architecture, each
SM has 192 SPs. The off-chip memory is called global mem-
ory, which has much longer access latency than on-chip
storages.

NVIDIA GPUs execute programs in a single-instruction-
multiple-thread (SIMT) manner. SMs execute threads in
groups of 32 concurrent threads called a warp. Several
warps are grouped into a thread block. One thread block is
executed on one SM, and one SM can hold several concur-
rent thread blocks. Data can be easily shared within a thread
block through the on-chip shared memory.

4 SPARSE LU FACTORIZATION ON GPUS

In this section, we present the GPU-based sparse LU factori-
zation approach and the optimization strategies in detail.
First, an overall framework is presented, and then optimiza-
tion strategies are discussed.

4.1 Overall Framework

The three shaded rectangles in Fig. 1 are called a sparse
solver. Fig. 4 shows the overall framework of the proposed
GPU-based sparse solver. Actually it is a CPU-GPU hybrid
solver, in which the most time-consuming numeric LU fac-
torization is implemented on the GPU, the host CPU per-
forms the scheduling for the GPU and executes the other
steps. The proposed solver focuses on GPU-based numeric
factorization to accelerate circuit simulation.

The pre-processing step performs row/column reorder-
ing to reduce fill-ins. The HSL_MC64 algorithm [33], [34] is
also performed in pre-processing to pre-scale the matrix to
enhance the numeric stability. During the iterations of cir-
cuit simulation, the structure of the circuit matrix is fixed,
so only the first factorization is performed with pivoting,
subsequent factorizations will use the fixed pivoting order
and fixed structure of the LU factors obtained by the first
factorization [16]. In circuit simulation, although values of
matrix elements change during iterations, they cannot
change much according to the physics of circuits, so this
approach can ensure the numeric stability of subsequent
factorizations. This flow was claimed to be effective in digi-
tal circuit simulation [35]. A subsequent factorization with-
out pivoting is also called a re-factorization. Pre-processing
is executed just once and its time cost is generally much less

Fig. 2. Two-mode scheduling in NICSLU.

Fig. 3. Rough diagram of the NVIDIA GPU architecture.

Fig. 4. Framework of the sparse solver on GPU.

788 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

than factorization, so its time cost is not of interest. The
right-hand-solving step costs much less time than factoriza-
tion (a test on NICSLU [3], [4], [5] shows that the right-
hand-solving step costs on average less than 1 percent of
the sequential factorization time), so LU re-factorization by
the sparse left-looking algorithm is the most time-consum-
ing step.

The GPU-based numeric re-factorization uses the paralle-
lization strategies mentioned in Section 3.2. In cluster mode,
each level launches a GPU kernel; while in pipeline mode,
only one kernel is launched. Before each re-factorization
executed on the GPU, the values of A are written to GPU’s
global memory, and when the GPU finishes one re-factori-
zation, the values of the LU factors are copied from GPU’s
global memory to the host memory. The right-hand-solving
step is executed on the host CPU.

4.2 Exploring More Parallelism

As shown in Algorithm 1, the core operation in the sparse
left-looking algorithm is vector multiplication-and-add
(MAD) (line 6). Cluster mode and pipeline mode are pro-
posed in [4] to describe the parallelism between vector
MAD operations. Take Fig. 5 as an example to explain this
level of parallelism. Column 1�7 are finished, and column
8�10 are being processed. The MAD operations represented
by solid arrows are executable. Parallelism exists in these
operations, though the numeric updates to a same column
must be executed in a strict order. This granularity of paral-
lelism is called inter-vector parallelism, which can also be
called task-level parallelism.

The inter-vector/task-level parallelism alone cannot take
full advantage of state-of-the-art GPU’s high memory band-
width and compute capability. We expose another intrinsic
granularity of parallelism in sparse LU factorization: intra-
vector parallelism, which is also called data-level parallel-
ism. This level of parallelism means that one vector is com-
puted by multiple threads simultaneously, which matches
the SIMT nature of GPUs. More specifically, each of the vec-
tor operations (lines 3, 6, 8 and 9) shown in Algorithm 1 is
computed by multiple concurrent threads. Now we con-
sider how to partition the workload to fully utilize the GPU
resources. In this point, several factors should be
considered.

For convenience, threads that process a same column are
called a virtual group. All threads in a virtual group operate
on elements in a same column and must synchronize. The
size of a virtual group should be carefully decided. First,

virtual groups should not be too large. This is because if the
size of a virtual group is larger than the number of nonzeros
in a column, some threads will idle. So smaller virtual
groups can reduce idle threads. However, virtual groups
should not be too small either. There are two reasons for
this point. First, too small virtual groups result in too few
threads in total (the number of virtual groups is limited by
the storage space and cannot be very large), leading to too
few concurrent columns, which cannot fully utilize the
GPU’s compute capability. Second, GPUs schedule threads
in a SIMT manner. If threads within a warp diverge, differ-
ent branches are executed serially. Different virtual groups
process different columns and hence often diverge. Thus,
too small virtual groups increase divergence within SIMT
threads.

In cluster mode, columns are very sparse, so while ensur-
ing enough threads in total, virtual groups should be as
small as possible to minimize idle threads. In pipeline
mode, columns usually contain enough nonzeros for a warp
or several warps, so the size of virtual groups matters little
in the sense of reducing idle threads. Taking all these factors
into consideration, we use one warp as one virtual group in
both modes. This strategy not only reduces divergence
within SIMT threads, but also saves synchronization costs,
since synchronization of threads within a warp is implicitly
guaranteed by the SIMT nature of GPUs.

The implementation details and optimization strategies
including synchronization for timing order and memory
access pattern optimization can be found in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2014.2312199.

5 EXPERIMENTAL RESULTS

5.1 Experiment Setup

All the experiments are tested on three platforms which
are shown in Table 2. GPU codes are programmed using
CUDA 5.0 [32] and compiled with -O3 optimization.
Twenty-three circuit matrices from University of Florida
Sparse Matrix Collection [36] are used to evaluate the
GPU solver. The performance of LU factorization on
GPUs is compared with NICSLU [3], [4], [5] (optimized by
hand-written SSE2 instructions and compiled with -O2

Fig. 5. Parallelism in left-looking algorithm.

TABLE 2
Specifications of Computing Platforms

CHEN ET AL.: GPU-ACCELERATED SPARSE LU FACTORIZATION FOR CIRCUIT SIMULATIONWITH PERFORMANCE MODELING 789

optimization), KLU [16] (compiled with-O3 optimization),
and PARDISO [21] from the Intel Math Kernel Library
(MKL). We show the main results here, some additional
results are shown in Appendix B, available online.

5.2 Results of LU Factorization on GPUs

5.2.1 Performance and Speedups

Table 3 shows the results of the proposed LU factorization
approach on NVIDIA GTX580 and NVIDIA K20x, and the
speedups compared with KLU and PARDISO which are
implemented on the host CPU. All the benchmarks are
sorted by the average number of floating-point operations
(flop) per nonzero (flop

NNZðLþU�IÞ). The listed time in Table 3 is
only for numeric re-factorization, excluding pre-processing
and right-hand solving. Some data have to be transferred
between the host memory and the device memory in every
re-factorization (see Fig. 4), time for these transfers are
included in the GPU re-factorization time.

Our GPU-based LU re-factorization outperforms KLU re-
factorization for most of the benchmarks. The speedups
tend to be higher for matrices with bigger flop

NNZðLþU�IÞ. This
indicates that GPUs are more suitable for problems that are
more computationally demanding. The average speedup is
24.24� achieved by GTX580 and 19.86� achieved by K20x.
Since the speedups differ greatly for different matrices, the
geometric means of speedups are also listed in Table 3.

Compared with sequential PARDISO, the GPU-based LU

re-factorization is also faster than PARDISO for most of the

benchmarks. The speedups tend to be higher for matrices

with smaller flop
NNZðLþU�IÞ. PARDISO utilizes BLAS to com-

pute dense subblocks so it performs better for matrices with

bigger flop
NNZðLþU�IÞ. The average speedup of the GPU-based

LU re-factorization is 18.77� achieved by GTX580 and

15.72� achieved by K20x. The geometric mean of the speed-

ups is 7.02� achieved by GTX580.
Compared with 16-threaded PARDISO, the GPU-based

LU re-factorization is faster than PARDISO for about half
of the benchmarks and slower for the other half. The aver-
age speedup is 1.55� (geometric mean) achieved by
GTX580 and 1.21� achieved by K20x. Fig. 6a shows the
average speedup of the GPU-based LU re-factorization
(implemented on GTX580), compared with PARDISO
using different number of threads. On average, the GPU-
based LU re-factorization approach outperforms multi-
threaded PARDISO.

Fig. 6b shows the average speedup of the GPU-based LU
re-factorization (implemented on GTX580) compared with
NICSLU re-factorization. Since the speedups differ little
for different matrices in these results, only arithmetic
means are presented. Fig. 6b indicates that the performance

TABLE 3
Performance of LU Factorization on GPUs, and the Speedups over KLU (re-factorization) and PARDISO

Fig. 6. Average speedups. The GPU results are obtained on GTX580.

790 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

of the GPU-based LU re-factorization is similar to that
of 10-threaded NICSLU. When the number of threads of
NICSLU is larger than 10, NICSLU will outperform the
GPU implementation. The average speedup of the GPU-
based LU re-factorization compared with 16-threaded NIC-
SLU is 0.78�.

Although the theoretic peak performance of K20x is
about 6� larger than that of GTX580 (for double-precision),
the results in Table 3 indicate that the achieved performance
on K20x and GTX580 is similar. The main reason is that per-
formance of sparse LU factorization on GPUs is bandwidth-
bound. We will explain this point in Section 6. The effective
global memory bandwidth of K20x (with ECC on) is very
close to that of GTX580, so the higher compute capability of
K20x cannot be explored.

5.2.2 Bottleneck Analysis

The achieved average bandwidth of all benchmarks is
53.81, 51.05, and 92.75 GB/s, obtained on NVIDIA
GTX580, NVIDIA K20x, and Intel E5-2690�2 (imple-
mented by 16-threaded NICSLU), respectively. For CPU
execution, some memory accesses are served by caches,
so the bandwidth may greatly exceed the theoretic peak
of the main memory. For different platforms, factors that
restrict the performance are different. For CPUs, large
caches and high clock frequency can greatly improve the
computational efficiency. However, for GTX580 and
K20x, disabling the L1 cache just results in less than 5
percent performance loss. It is difficult to evaluate the
effect of GPU’s L2 cache, since there is no way to disable
the L2 cache of current NVIDIA GPUs programmed
using CUDA. Since GPU’s L2 cache is much smaller than
modern CPU’s last level cache (LLC) and there are much
more cores sharing the LLC on a GPU, it is expected that
the LLC has less effect on GPUs than on CPUs. The main
bottleneck of the proposed LU re-factorization approach
on GPUs is the peak global memory bandwidth.

We have found that processing too many columns con-
currently may decrease the performance on GPUs. Fig. 7
shows the giga floating-point operations per second
(Gflop/s) of three matrices obtained on GTX580 and
K20x, using different number of resident warps per SM.
The best performance is attained with about 24 (for
GTX580)/40 (for K20x) resident warps per SM, rather
than with maximum resident warps per SM. Although
the reported bandwidth in Table 3 does not reach the
peak bandwidth of the GPU, Fig. 7 indicates that we have

already fully utilized the bandwidth with 24 (for
GTX580)/40 (for K20x) resident warps per SM. It also
means that the actual bandwidth is saturated with 24 (for
GTX580)/40 (for K20x) resident warps per SM. When
warps become more, the performance is constrained and
becomes lower. To explain this phenomenon in detail, we
build a parametric performance model in Section 6.

6 PERFORMANCE EVALUATION OF LU
FACTORIZATION ON GPUS

In this section, a parametric performance model is built to
explain the phenomenon shown in Fig. 7 in detail. With
this model, we can investigate the relation between the
achieved GPU performance and the GPU parameters
such as the global memory bandwidth and the number of
warps, to help us better understand the bottlenecks of the
solver and choose the optimal number of work threads
on the given hardware platform. Actually the proposed
model is universal and can also be used for other GPU
applications.

A CWP-MWP (CWP andMWP are short for computation
warp parallelism and memory warp parallelism) model is
proposed in [37]. In that model, a warp that is waiting for
memory data is called a memory warp, and MWP repre-
sents the number of memory warps that can be handled
concurrently on one SM. We have attempted to use the
CWP-MWP model to evaluate the performance on NVIDIA
GTX580, but it gets incorrect results, as shown in Fig. 8. The
reason is that MWP in the CWP-MWP model is very small
(4�7 for different matrices), so when the number of resident
warps per SM exceeds MWP , the execution time is greatly
affected by the global memory latencies, leading to unrea-
sonable predicted results.

In this paper, a better performance model is proposed,
which improves the CWP-MWP model at the following
points.

� Computation of MWP is changed. MWP is hard-
ware-specific and directly constrained by the peak
bandwidth of the global memory.

� Concepts of MWP req and warp exp which have
physical meanings are introduced to illustrate the
different cases of warp scheduling.

� The effect of the L2 cache is considered.

� The CWP-MWP model performs static analysis on
the compiled code to predict performance. However,
in the pipeline mode (see Appendix A.1, available

Fig. 7. Achieved GPU performance, using different number of resident
warps per SM.

Fig. 8. Predicted LU factorization time by the CWP-MWP model [37], for
ASIC_100 ks, obtained on GTX580.

CHEN ET AL.: GPU-ACCELERATED SPARSE LU FACTORIZATION FOR CIRCUIT SIMULATIONWITH PERFORMANCE MODELING 791

online) of sparse LU factorization, each warp waits
for some other warps to finish, which is a run-time
behavior and the time cost of waiting cannot be
determined at compilation time. Our solution is
based on a DAG analysis to avoid such dynamic
behaviors.

Based on the performance model, the execution cycles of
each task (i.e., node) in a DAG can be calculated, and then
we calculate the execution cycles of the whole DAG by a
well-known method which finds the critical path of the
DAG (see Appendix C.2, available online, for details).

6.1 Parametric Performance Model

GPUs hide global memory latencies by warp switches, as
shown in Fig. 9. When a warp invokes a global memory
request, the SIMT engine switches to another warp that is
not waiting for data to execute. Our model is based on the
basic warp scheduling in GPUs.

6.1.1 Parameters

The parameters used in the model are shown in Table 4. In
the following contents, some important parameters are
introduced.

mem cycle represents the average cycles of each memory
period as marked in Fig. 9. Considering the cache miss rate
miss rate, mem cycle is expressed as a weighted combina-
tion of global cycle and cache cycle:

mem cycle ¼ global cycle�miss rate

þ cache cycle� ð1�miss rateÞ; (1)

miss rate is measured on the target GPU using a micro-
benchmark, see Appendix C.1, available online, for details.

MWP represents the maximum number of memory
warps that can be served concurrently on one SM. It is hard-
ware-specific and directly constrained by the peak band-
width of the global memory:

MWP ¼ peak bandwidth�mem cycle

#SM � freq � load bytes per wap
; (2)

where peak bandwidth, #SM and freq are physical
parameters of a GPU. load bytes per wap means the aver-
age data size accessed from the global memory in each
memory period. Since in a MAD operation, there are 1
int reading operation, 2 double reading operations, and
1 double writing operation, the equivalent data size
accessed from the global memory considering the cache

effect is expressed as:

load bytes per wap

¼ size of ðintÞ þ 3� size of ðdoubleÞ
4

� 32�miss rate:

(3)

MWP req is the number of concurrent memory warps
requested by the invoked warps on one SM. As can be seen
from Fig. 9, if the GPU can support mem cycle

comp cycle concurrent
memory warps on one SM, all the memory requests can be
served without delaying. SoMWP req is given by

MWP req ¼ MIN
mem cycle

comp cycle
;#warp

� �
; (4)

warp exp means the expected number of concurrent
warps on one SM such that the memory latencies can be
completely hidden. Still take Fig. 9 as an example, to hide
the latency of one memory period, there should be at least
mem cycle
comp cycle þ 1warps running concurrently, so

warp exp ¼ mem cycle

comp cycle
þ 1 (5)

6.1.2 Three Cases in Warp Scheduling

Based on the above parameters, there are three cases in the
warp scheduling of GPUs, according to the number of resi-
dent warps per SM, as illustrated in Fig. 10.

Case 1 (Fig. 10a). if #warp � warp exp and MWP �
MWP req, there are enough warps running to hide global
memory latencies and the memory bandwidth is also suffi-
cient to support all the concurrent memory warps. In the
time line, each memory period follows the corresponding
computing period closely and no delay occurs. The total
runtime is mainly determined by the computing periods.
For a given warp that is repeated for #repeat iterations
(#repeat ¼ 3 in Fig. 10a), the number of total execution
cycles is:

Fig. 9. Illustration of warp scheduling and some parameters.

TABLE 4
Parameters Used in the Model, for GTX580

792 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

total cycle per warp

¼ ð#repeat� 1Þ � comp cycle�#warp

þ comp cycleþmem cycle:

(6)

Case 2 (Fig. 10b). If MWP < MWP req, the limited mem-
ory bandwidth cannot support all the memory warps con-
currently. For example, in Fig. 10b, MWP ¼ 3 and
MWP req ¼ 4, so the requested memory warps cannot be
handled concurrently and they are served by queueing.
Each memory period cannot closely follow its correspond-
ing computing period, leading to some delay in the subse-
quent computing periods and memory periods. Note that
Fig. 10b is plotted from the beginning of execution, the first
two iterations are a little different from the subsequent itera-
tions. The number of execution cycles of a warp is mainly
determined by memory periods:

total cycle per warp

¼ #repeat�mem cycle�#warp

MWP
:

(7)

Case 3 (Fig. 10c). if #warp < warp exp and MWP �
MWP req, warps are too few to hide the memory latency
(the memory bandwidth is sufficient to support all the con-
current memory warps). This case is simple and we have

total cycle per warp

¼ #repeat� ðcomp cycleþmem cycleÞ: (8)

6.2 Discussion

We have validated the accuracy of the proposed model,
please see Appendix C.3, available online, for details. Here
we explain why using maximum resident warps per SM is
not the best choice on GPUs, taking GTX580 as an example.

We show the results of two matrices in Fig. 11. The pro-
posed performance model indicates that MWP � 23 � 26
and warp exp � 40 � 50 on GTX580, for different bench-
marks. When #warp � 24 (case 3), warps are too few to
hide memory latencies, and the global memory bandwidth
is sufficient to support all these warps, so the performance
increases with more warps. When #warp � 28 (case 2),
warps are still too few to hide memory latencies, but on the
other hand, warps are so many that the global memory
bandwidth cannot support all the memory warps concur-
rently, so the performance is limited by the memory band-
width and decreases with more warps. Consequently,
#warp ¼ 24 is the best choice on NVIDIA GTX580.

In sparse LU factorization, the computation-to-memory
ratio is very low (there are only 2 � 5 computational
instructions between two global memory instructions), lead-
ing to a low comp cycle (< 10) and a high warp exp (40 � 50,
for GTX580). Case 1 is the best case in GPU computing, but
it does not exist in the proposed LU factorization approach
performed on our GPUs, since warp exp is larger than the
maximum number of resident warps per SM.

It is necessary to explain why the bandwidth reported
in Table 3 does not reach the peak bandwidth of the
GPU, but the performance is still constrained by the
global memory bandwidth. The bandwidth reported in
Table 3 only considers the necessary data sizes. We can
regard this bandwidth as “effective bandwidth”. How-
ever, GPUs work in a different way. NVIDIA GPUs access
to the global memory via aligned 32-, 64- or 128-byte
memory transactions [32]. If a warp only needs an 1-byte
data, it still requests a 32-byte transaction. In this case,
the unused 31 bytes are unnecessary but they still occupy
the memory bandwidth. Consequently, the actual run-
time memory bandwidth which constrains the perfor-
mance, is larger than the reported effective bandwidth. If
the peak memory bandwidth can be larger, we still have
a great potential to further improve the performance,
since currently we do not fully utilize the compute capa-
bility of GPUs.

7 CONCLUSIONS

This paper presents a GPU-based sparse direct solver
intended for circuit simulation problems, which is based on
parallel LU numeric factorization without pivoting. We
have presented the GPU-based LU factorization approach
in detail and analyzed the performance. A parametric per-
formance model is built to investigate the bottleneck of the

Fig. 10. Illustration of GPU execution.

Fig. 11. Predicted time and actual time (on GTX580), with different
#warp.

CHEN ET AL.: GPU-ACCELERATED SPARSE LU FACTORIZATION FOR CIRCUIT SIMULATIONWITH PERFORMANCE MODELING 793

proposed approach and choose the optimal number of work
threads on the given hardware platform.

The proposed LU factorization approach on NVIDIA
GTX580 achieves on average 7.02� (geometric mean)
speedup compared with sequential PARDISO, and 1.55�
speedup compared with 16-threaded PARDISO. The perfor-
mance of the proposed GPU solver is comparable to that of
the existing GPU solvers listed in Table 1. The model-based
analysis indicates that the performance of the GPU-based
LU factorization is constrained by the global memory band-
width. Consequently, if the global memory bandwidth
becomes larger, the performance can be further improved.

One limitation of the current approach is that it can be
only implemented on single-GPU platforms. For multiple-
GPU platforms, blocked algorithms are required, and the
data transfers between GPUs need to be carefully con-
trolled. In addition, multiple GPUs can provide larger
global memory bandwidth so the performance is expected
to be higher.

ACKNOWLEDGMENTS

This work was supported by 973 project (2013CB329000),
National Science and Technology Major Project
(2013ZX03003013-003) and National Natural Science Foun-
dation of China (No. 61373026, No. 61261160501), and Tsing-
hua University Initiative Scientific Research Program. This
work was done when Ling Ren was at Tsinghua University.
We would like to thank Prof. Haohuan Fu and Yingqiao
Wang from Center for Earth System Science, Tsinghua Uni-
versity for lending us the NVIDIA Tesla K20x platform. We
also thank theNVIDIACorporation for donating us GPUs.

REFERENCES

[1] L. W. Nagel, “SPICE 2: A computer program to stimulate semi-
conductor circuits,” Ph.D. dissertation, Univ. California, Berkeley,
CA, USA, 1975.

[2] S. Rajamanickam, E. Boman, and M. Heroux, “ShyLU: A hybrid-
hybrid solver for multicore platforms,” in Proc. IEEE 26th Int.
Parallel Distrib. Process. Symp., 2012, pp. 631–643.

[3] X. Chen, Y. Wang, and H. Yang, “An adaptive LU factorization
algorithm for parallel circuit simulation,” in Proc. 17th Asia and
South Pacific Design Autom. Conf., Jan. 30, 2012–Feb. 2, 2012,
pp. 359–364.

[4] X. Chen, W. Wu, Y. Wang, H. Yu, and H. Yang, “An escheduler-
based data dependence analysis and task scheduling for parallel
circuit simulation,” IEEE Trans. Circuits Syst. II: Express Briefs,
vol. 58, no. 10, pp. 702–706, Oct. 2011.

[5] X. Chen, Y. Wang, and H. Yang, “NICSLU: An adaptive sparse
matrix solver for parallel circuit simulation,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 32, no. 2, pp. 261–274, Feb.
2013.

[6] N. Kapre and A. DeHon, “Performance comparison of single-pre-
cision SPICE model-evaluation on FPGA, GPU, Cell, and multi-
core processors,” in Proc. Int. Conf. Field Programmable Logic and
Appl., Aug. 31, 2009–Sep. 2, 2009, pp. 65–72.

[7] K. Gulati, J. Croix, S. Khatri, and R. Shastry, “Fast circuit simula-
tion on graphics processing units,” in Proc. Asia and South Pacific
Design Autom. Conf., Jan. 2009, pp. 403–408.

[8] R. Poore, “GPU-accelerated time-domain circuit simulation,” in
Proc. IEEE Custom Integr. Circuits Conf., Sep. 2009, pp. 629–632.

[9] J. W. H. Liu, “The multifrontal method for sparse matrix solu-
tion: Theory and practice,” SIAM Rev., vol. 34, no. 1, pp. 82–
109, 1992.

[10] M. Christen, O. Schenk, and H. Burkhart, “General-purpose
sparse matrix building blocks using the NVIDIA CUDA technol-
ogy platform,” in Proc. First Workshop General Purpose Process.
Graph. Process. Units, 2007, pp. 1–8 .

[11] G. P. Krawezik and G. Poole, “Accelerating the ANSYS direct
sparse solver with GPUs,” in Proc. Symp. Appl. Accelerators High
Perform. Comput., July 2009, pp. 1–3.

[12] C. D. Yu, W. Wang, and D. Pierce, “A CPU-GPU hybrid approach
for the unsymmetric multifrontal method,” Parallel Comput.,
vol. 37, no. 12, pp. 759–770, Dec. 2011.

[13] T. George, V. Saxena, A. Gupta, A. Singh, and A. Choudhury,
“Multifrontal Factorization of Sparse SPD Matrices on GPUs,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2011, pp. 372–383.

[14] R. F. Lucas, G. Wagenbreth, J. J. Tran, and D. M. Davis,
“Multifrontal sparse matrix factorization on graphics processing
units,” Los Angeles, CA, USA, Tech. Rep. ISI-TR-677, 2012.

[15] R.F. Lucas, G. Wagenbreth, D. M. Davis, and R. Grimes,
“Multifrontal computations on GPUs and their multi-core hosts,”
in Proc. 9th Int. Conf. High Perform. Comput. Comput. Sci., 2011,
pp. 71–82.

[16] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a
direct sparse solver for circuit simulation problems,” ACM Trans.
Math. Softw., vol. 37, pp. 36:1–36:17, Sep. 2010.

[17] L. Ren, X. Chen, Y. Wang, C. Zhang, and H. Yang, “Sparse LU fac-
torization for parallel circuit simulation on GPU,” in Proc. 49th
ACM/EDAC/IEEE Design Autom. Conf., Jun. 2012, pp. 1125–1130.

[18] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous paral-
lel supernodal algorithm for sparse gaussian elimination,” SIAM
J. Matrix Anal. Appl., vol. 20, no. 4, pp. 915–952, 1999.

[19] J. R. Gilbert and T. Peierls, “Sparse partial pivoting in time pro-
portional to arithmetic operations,” SIAM J. Sci. Statist. Comput.,
vol. 9, no. 5, pp. 862–874, 1988.

[20] J. J. Dongarra, J. D. Cruz, S. Hammerling, and I. S. Duff,
“Algorithm 679: A set of level 3 basic linear algebra subprograms:
Model implementation and test programs,” ACM Trans. Math.
Softw., vol. 16, no. 1, pp. 18–28, Mar. 1990.

[21] O. Schenk and K. G€artner, “Solving unsymmetric sparse systems
of linear equations with PARDISO,” Future Generat. Comput. Syst.,
vol. 20, no. 3, pp. 475–487, Apr. 2004.

[22] G. Poole, Y. Liu, Y. cheng Liu, and J. Mandel, “Advancing analysis
capabilities in ansys through solver technology,” in Proc. Electron.
Trans. Numer. Anal., Jan. 2003, pp. 106–121.

[23] T. A. Davis, “Algorithm 832: Umfpack v4.3—An unsymmetric-
pattern multifrontal method,” ACM Trans. Math. Softw., vol. 30,
no. 2, pp. 196–199, Jun. 2004.

[24] A. Gupta, M. Joshi, and V. Kumar, “WSMP: A high-performance
shared- and distributed-memory parallel sparse linear solver,”
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA,
Tech. Rep. RC 22038 (98932), Apr. 2001.

[25] V. Volkov and J. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., Nov. 2008, pp. 1–11.

[26] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear alge-
bra solvers for multicore with GPU accelerators,” in Proc. IEEE
Int. Symp. Parallel Distrib. Process., Workshops Phd Forum, Apr.
2010, pp. 1–8.

[27] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear
algebra for hybrid GPU accelerated manycore systems,” Parallel
Comput., vol. 36, pp. 232–240, Jun. 2010.

[28] J. Kurzak, P. Luszczek, M. Faverge, and J. Dongarra, “LU factori-
zation with partial pivoting for a multicore system with acceler-
ators,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 8, pp. 1613–
1621, Aug. 2013.

[29] The Univ. Tennessee, Knoxville, TN, USA. The MAGMA Project.
(2013). [Online]. Available: http://icl.cs.utk.edu/magma/index.
html

[30] NVIDIA Corporation. (2012). CUDA BLAS [Online]. Available:
http://docs.nvidia.com/cuda/cublas/

[31] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam,
“Algorithm 887: Cholmod, supernodal sparse cholesky factoriza-
tion and update/downdate,” ACM Trans. Math. Softw., vol. 35,
no. 3, pp. 22:1–22:14, Oct. 2008.

[32] NVIDIA Corporation. NVIDIA CUDA C Programming guide.
(2012). [Online]. Available: http://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html

[33] I. S. Duff and J. Koster, “The design and use of algorithms for per-
muting large entries to the diagonal of sparse matrices,” SIAM J.
Matrix Anal. Appl., vol. 20, no. 4, pp. 889–901, Jul. 1999.

[34] I. S. Duff and J. Koster, “On algorithms for permuting large entries
to the diagonal of a sparse matrix,” SIAM J. Matrix Anal. Appl.,
vol. 22, no. 4, pp. 973–996, Jul. 2000.

794 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 3, MARCH 2015

[35] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and
F. Somenzi, “Algebric decision diagrams and their applications,”
Formal Methods Syst. Design, vol. 10, no. 2/3, pp. 171–206, 1997.

[36] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25,
Dec. 2011.

[37] S. Hong and H. Kim, “An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness,” in
Proc. 36th Annu. Int. Symp. Comput. Archit., 2009, pp. 152–163.

Xiaoming Chen (S’12) received the BS degree
from the Department of Electronic Engineering,
Tsinghua University, Beijing, China, in 2009,
where he is currently working toward the PhD
degree. His current research interests include
power and reliability-aware circuit design meth-
odologies, parallel circuit simulation, high-perfor-
mance computing on GPUs, and GPU
architecture. He was nominated for the Best
Paper Award in ISLPED 2009 and ASPDAC
2012. He is a student member of the IEEE.

Ling Ren received the BS degree from the
Department of Electronic Engineering, Tsinghua
University, Beijing, China, in 2012. He is currently
working toward the PhD degree in the Depart-
ment of Electrical Engineering and Computer Sci-
ence at Massachusetts Institute of Technology.
His research interests include computer architec-
ture, computer security, and parallel computing.

Yu Wang (S’05-M’07) received the BS degree
and the PhD degree (with honor) from Tsinghua
University, Beijing, China in 2002 and 2007,
respectively. He is currently an associate profes-
sor with the Department of Electronic Engineer-
ing, Tsinghua University. His current research
interests include parallel circuit analysis, low-
power and reliability-aware system design meth-
odology, and application-specific hardware com-
puting, especially for brain-related topics. He has
authored and co-authored more than 90 papers

in refereed journals and conference proceedings. He received the Best
Paper Award in ISVLSI 2012. He was nominated five times for the Best
Paper Award (ISLPED 2009, CODES 2009, twice in ASPDAC 2010,
and ASPDAC 2012). He is the Technical Program Committee co-chair
of ICFPT 2011, the Publicity co-chair of ISLPED 2011, and the finance
chair of ISLPED 2013. He is a member of the IEEE.

Huazhong Yang (M’97-SM’00) received the BS
degree in microelectronics, and the MS and PhD
degrees in electronic engineering from Tsinghua
University, Beijing, China, in 1989, 1993, and
1998, respectively. In 1993, he joined the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, where he is currently a specially appointed
professor of the Cheung Kong Scholars Pro-
gram. He has authored and co-authored more
than 200 technical papers and holds 70 granted
patents. His current research interests include

wireless sensor networks, data converters, parallel circuit simulation
algorithms, nonvolatile processors, and energy-harvesting circuits. He is
a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ET AL.: GPU-ACCELERATED SPARSE LU FACTORIZATION FOR CIRCUIT SIMULATIONWITH PERFORMANCE MODELING 795

1

GPU-Accelerated Sparse LU Factorization for
Circuit Simulation with Performance Modeling

(Supplementary Material)
Xiaoming Chen, Student Member, IEEE , Ling Ren, Yu Wang, Member, IEEE ,

and Huazhong Yang, Senior Member, IEEE

F

APPENDIX A
IMPLEMENTATION DETAILS AND OPTIMIZATION
STRATEGIES

A.1 Ensuring Timing Order on GPUs

Algorithm 1 shows the pipeline mode parallel left-
looking algorithm. In this mode, appropriate timing or-
der between columns must be guaranteed. Line 6 shows
that a column must wait for its dependent columns to
finish. If column k depends on column t, only after col-
umn t is finished, can column k be updated by column t.
We use Fig. 1 as an example to explain it. Columns 8∼10
are being processed simultaneously, and other columns
are finished. Column 9 can be first updated by columns
4, 6 and 7. But currently column 9 cannot be updated
by column 8 since column 8 is not finished. Column 9
must wait for column 8 to finish. Similar situation is for
column 10.

We set a flag which ia marked as volatile for each col-
umn to indicate whether the column is finished (false
for unfinished and true for finished). Line 6 is executed
by a while loop, and in the loop, the flag corresponding
to the dependent column is checked. If the flag changes
to true, the loop exits. Another work [1] uses a similar
method to deal with the timing order in the case of one-
way dependence.

Ensuring timing order on GPUs deserves special atten-
tion. The number of warps in a GPU kernel must be care-
fully controlled. This issue is with respect to the concept
of resident warp (or active warp) [2] on GPUs. Unlike
the context switch mechanism of CPUs, GPUs have large
register files to hold lots of warps, and warps which
can be switched for execution are resident in registers
to ensure a zero-overhead context switch. Consequently,
there is a maximum number of resident warps that the
register file can handle. In addition to the register file,
the shared memory usage can also restrict the maximum
number of resident warps (our algorithm does not use
any shared memory). If the number of assigned warps
exceeds the maximum number of resident warps, some
warps will be not resident at the beginning, and they

Algorithm 1 Pipeline mode algorithm.

1: for each warp in parallel do
2: while there are still unfinished columns do
3: Get a new unfinished column, say column i;
4: Put A(:, i) into an intermediate vector x;
5: for j = 1 : i− 1 where U(j, i) ̸= 0 do
6: Wait until column j is finished;
7: x(j + 1 : n)− = x(j)× L(j + 1 : n, j);
8: end for
9: U(1 : i, i) = x(1 : i);

10: L(i : n, i) = x(i : n)/x(i);
11: Mark column i as finished;
12: end while
13: end for

level columns

0

1

2

3

1 2 3 5 7

4 6

8

9

104

cluster

mode

pipeline

mode

warp 1

warp 2

warp 3, inactive

in pipeline mode

finished

deadlock

finished

X inexecutable

Columns

Operations

not started

executable

Fig. 1: Illustration of deadlock caused by non-resident
warps.

have to wait for other resident warps to finish execution
and then become resident.

In pipeline mode, we have to ensure all the warps to
be resident from the beginning. If a column is computed
by a non-resident warp, columns depending on it have
to wait for this column to finish. But in turn, the non-
resident warp has no chance to become resident because

2

no resident warp can finish. This results in a deadlock.
Fig. 1 is an illustration of a deadlock. Suppose we have
invoked 3 warps on a GPU that supports only 2 resident
warps. There is no problem in cluster mode, since warps
1 and 2 will eventually finish execution so warp 3 can
start. But in pipeline mode, columns 9 and 10 depend on
column 8, which is allocated to the non-resident warp 3,
so the resident warps (warps 1 and 2) fall in deadlocks,
waiting for column 8 forever. This in turn leaves no
chance for warp 3 to become resident.

Therefore the maximum number of columns that can
be factorized concurrently in pipeline mode is exactly
the maximum number of resident warps of the kernel.
In sparse LU factorization, this number depends on the
register usage, which can be obtained from the compiler
or some profiling tools. The number of resident warps
greatly influences the performance of the solver. We have
also found that processing too many columns concur-
rently is undesirable. Our experiments in Section 5 of
the main paper will confirm this point, and a detailed
explanation is presented in Section 6 of the main paper.

A.2 Optimization of Memory Access Patterns
Optimization of sparse LU factorization on GPUs is
mainly about memory optimization. In this subsection,
we discuss the data format for intermediate vectors, and
the sorting process for more coalesced access patterns to
the global memory.

A.2.1 Format of Intermediate Vectors
We have two alternative data formats for the interme-
diate vectors (x in Algorithm 1): compressed sparse
column (CSC) vectors or uncompressed vectors. CSC
vectors save space and can be placed in the shared
memory, while uncompressed vectors have to reside in
the global memory. Uncompressed vectors are preferred
in this problem for two reasons. First, CSC format is
inconvenient for indexed accesses. We have to use binary
search, which is very time-consuming even in the shared
memory. Moreover, using too much shared memory will
reduce the maximum number of resident warps, which
results in severe performance degradation:

resident warps per SM ≤ size of shared memory per SM
size of a CSC vector

Our tests have proved that using uncompressed formats
is several times faster than using compressed formats.

A.2.2 Improving Data Locality
Higher global memory bandwidth can be achieved on
GPUs if memory access patterns are coalesced [2]. The
nonzeros in L and U are out of order after pre-processing
and the first factorization performed on the host CPU,
resulting in highly random memory access patterns. We
sort the nonzeros in each column of L and U by their row
indices to improve the data locality. As shown in Fig. 2,
after sorting, neighboring nonzeros in each column are
more likely to be processed by consecutive threads.

T0 T1 T2 T3 T31

global memory

threads in a warp

(a) Unsorted nonzeros, random memory access.

T0 T1 T2 T3 T31

global memory

threads in a warp

(b) Sorted nonzeros, more coalesced memory access.

Fig. 2: More coalesced memory access patterns after
sorting the nonzeros.

0

20

40

60

80

100

120

140

160

180

200

ad
d
3
2

h
ci
rc
u
it

ad
d
2
0

b
ci
rc
u
it

ci
rc
u
it
_
4

sc
ir
cu
it

ra
ja
t0
3

co
u
p
le
d

ra
ja
t1
5

ra
ja
t1
8

ra
j1

tr
an
si
en
t

ra
ja
t2
4

as
ic
_
6
8
0
k

o
n
et
o
n
e2

as
ic
_
6
8
0
k
s

as
ic
_
3
2
0
k

as
ic
_
1
0
0
k

as
ic
_
3
2
0
k
s

as
ic
_
1
0
0
k
s

o
n
et
o
n
e1

g
2
_
ci
rc
u
it

tw
o
to
n
eA

ch
ie

v
ed

 m
em

o
ry

 b
a

n
d

w
id

th
 (

G
B

/s
)

unsorted

sorted

Fig. 3: Performance increases after sorting the nonzeros.

In Fig. 3, we use the test benchmarks to show the
effect of sorting. The achieved memory bandwidth is
significantly increased by an average of 2.1×. It is worth
mentioning that CPU-based sparse LU factorization also
benefits from sorting the nonzeros, but the performance
gain is tiny (less than 5% on average). Sorting the
nonzeros is done by transposing the CSC storages of L
and U twice. The time cost of sorting is about 20% on
average of the time cost of one LU re-factorization on
GPUs. In addition, sorting is performed just once so its
time cost is not the bottleneck and negligible in circuit
simulation.

APPENDIX B
ADDITIONAL RESULTS

B.1 Relation Between the Achieved GPU Perfor-
mance and Matrix Characteristics
We find that the achieved GPU performance strongly
depends on the characteristics of the matrices, as shown
in Fig. 4. The two subfigures are scatter plots, in which
each point represents a matrix. The results are obtained
on GTX580. They show that the achieved GPU perfor-
mance has an approximate logarithmic relation with the
relative fill-in (NNZ(L+U−I)

NNZ(A)) or the average number of
flop per nonzero (flop

NNZ(L+U−I)). The fitted lines are also
plotted in Fig. 4.

3

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 4 8 16 32 64 128 256 512 1024

G
fl
o
p
/s

flop/NNZ(L+U-I)

(a) Relation between the achieved GPU perfor-
mance and the average number of flop per nonzero.

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 4 8 16 32

G
fl
o
p
/s

NNZ(L+U-I)/NNZ(A)

(b) Relation between the achieved GPU perfor-
mance and the relative fill-in.

Fig. 4: Relation between the achieved GPU performance
and matrix characteristics, obtained on NVIDIA GTX580.

B.2 Comparison with GMRES in CUSP

The GPU solver is compared with a preconditioned
generalized minimal residual (GMRES) [3] iterative
solver in the CUSP library 0.3.1 [4]. The GMRES solver
uses an approximate inversion preconditioner named
nonsym_bridson_ainv, which is based on an incom-
plete factorization and a dropping strategy proposed
in [5]. The results shown in Table 1 are obtained on
K20x. The results indicate that for circuit matrices, the
GMRES iterative solver is not competitive compared
with our direct solver. We have also tried other pre-
conditioners provided by CUSP but they do not help
improve the performance of GMRES. Iterative solvers
need good preconditioners to ensure convergence, but
circuit matrices are asymmetric and irregular so are hard
to precondition. In addition, in circuit simulation, the
matrix entries change during iterations, so precondi-
tioner is required in each iteration, which significantly
increases the computational time of iterative solvers. As
shown in Table 1, the preconditioner costs most of the
computational time of the iterative solver. Regardless of
the preconditioner, time cost of the iterative solving step
is also larger than that of the direct solver.

TABLE 1: Comparison with the preconditioned GMRES
iterative solver in the CUSP library, obtained on K20x.

Our approach GMRES solver in CUSP
GPU factoriz.+CPU solve GPU precond.+GPU solve
transf. factoriz. solve total transf. precond. solve total

add32 0.000 0.001 0.000 0.001 0.000 0.220 0.021 0.241
hcircuit 0.003 0.007 0.003 0.012 0.001 2.075 0.193 2.269
add20 0.000 0.000 0.000 0.001 0.000 0.377 0.189 0.566

bcircuit 0.005 0.003 0.003 0.010 0.001 1.042 36.930 37.972
circuit 4 0.002 0.029 0.002 0.033 0.001 0.386 40.024 40.411
scircuit 0.011 0.017 0.008 0.035 0.001 3.561 0.225 3.787
rajat03 0.001 0.003 0.000 0.005 0.000 0.091 0.097 0.188

coupled 0.002 0.017 0.001 0.020 0.000 1.973 0.167 2.140
rajat15 0.008 0.037 0.003 0.048 0.000 9.281 0.159 9.440
rajat18 0.005 0.072 0.003 0.080 0.001 42.358 0.293 42.652

raj1 0.033 0.268 0.019 0.320 0.002 1015.778 0.561 1016.341
transient 0.009 0.168 0.006 0.183 0.002 2340.344 0.487 2340.832
rajat24 0.018 0.336 0.013 0.367 0.003 2740.974 0.788 2741.764

asic 680k 0.029 0.985 0.024 1.038 fail
onetone2 0.006 0.049 0.002 0.057 0.000 0.657 0.157 0.814

asic 680ks 0.021 0.116 0.019 0.156 0.004 3.716 0.027 3.746
asic 320k 0.025 0.589 0.019 0.634 fail
asic 100k 0.019 0.342 0.009 0.369 0.001 1057.375 0.382 1057.758
asic 320ks 0.022 0.147 0.017 0.185 0.002 2.304 0.012 2.318
asic 100ks 0.017 0.141 0.008 0.165 0.001 0.766 0.079 0.847
onetone1 0.014 0.146 0.005 0.165 0.000 1.991 0.174 2.165
g2 circuit 0.085 0.805 0.035 0.925 0.001 1.288 16.053 17.343
twotone 0.052 0.777 0.018 0.846 0.001 16.977 0.218 17.197

B.3 Results of Right-Hand-Solving
Though the time cost of right-hand-solving is fairly
small, it will affect the scalability of the solver if the LU
factorization time is significantly reduced. The parallel
strategy of right-hand-solving can be very similar to
the parallel re-factorization algorithm proposed in [6].
NVIDIA researches have also proposed a similar parallel
triangular solving strategy [7], which is included in
the cuSPARSE library [8] (cuSPARSE is an integrated
library in CUDA). The comparison between cuSPARSE
(version 5.0, implemented on NVIDIA K20x) and CPU-
based sequential right-hand-solving is shown in Fig. 5
(the reported GPU time excludes the analysis time). The
host CPU is on average 3.16× faster than the GPU for
the right-hand-solving step. The right-hand-solving step
has much fewer flop than numeric factorization, leading
to a high communication-to-memory ratio, especially for
circuit matrices. Consequently, GPU-based right-hand-
solving for circuit matrices is not expected to obtain
high speedups. In addition, a recent research shows that
the maximum speedup of parallel right-hand-solving on
multicore CPUs is less than 2× regardless of the number
of threads [9]. Our hybrid solver uses sequential right-
hand-solving executed on CPUs.

APPENDIX C
SUPPLEMENTARY FOR THE PERFORMANCE
MODEL

C.1 Measurement of the Cache Miss Rate
We have found that for GTX580 and K20x, disabling the
L1 cache just results in less than 5% performance loss, so
the effect of the L1 cache is fairly small. Consequently,

4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ad
d
3

2

h
ci

rc
u
it

ad
d
2

0

b
ci

rc
u
it

ci
rc

u
it

_
4

sc
ir

cu
it

ra
ja

t0
3

co
u
p

le
d

ra
ja

t1
5

ra
ja

t1
8

ra
j1

tr
an

si
en

t

ra
ja

t2
4

as
ic

_
6

8
0
k

o
n
et

o
n

e2

as
ic

_
6

8
0
k

s

as
ic

_
3

2
0
k

as
ic

_
1

0
0
k

as
ic

_
3

2
0
k

s

as
ic

_
1

0
0
k

s

o
n
et

o
n

e1

g
2
_

ci
rc

u
it

tw
o

to
n

e

ti
m

e
 (

s)

CPU solve + data transfer

GPU solve + data transfer

Fig. 5: Comparison of the right-hand-solving time. The
CPU code is sequential. The GPU time excludes the
analysis time.

we ignore the L1 cache in the model. In our model,
“cache” refers to the L2 cache. The miss rate of the L2
cache miss rate is difficult to be analytically modeled,
since the cache behavior is very complex and affected
by many low-level factors. But we find that miss rate
has a strong relation with the number of transactions of
each memory period (mem trans). If the memory access
patterns are more coalesced, fewer memory transactions
are generated, the cache hit ratio is higher. In addition,
if there are more resident warps on one SM, the cache
hit ratio will decrease since more warps are sharing the
same cache. A micro-benchmark designed for this study
is used to measure the cache miss rate. The code of the
micro-benchmark is shown here:

__global__ void CacheMissRateMeasurement
(double *a, double *b, int stride)

{
int tid = threadIdx.x
+ blockIdx.x*blockDim.x;
double x = a[tid];
for (int i=tid; i<N; i+=32)
{

a[(i*stride)%N] -= x * b[i];
}

}

Basically, this micro-benchmark emulates the core opera-
tion (multiplication-and-add) in sparse LU factorization.
The parameter stride is used to control the number
of memory transactions. The number of resident warp-
s is controlled by the invoked threads of this micro-
benchmark. The measured results on GTX580 are shown
in Fig. 6, using NVIDIA Visual Profiler.

C.2 Directed Acyclic Graph (DAG) Analysis

As mentioned in Section 3.2 of the main paper, a depen-
dence graph (DAG) is used to describe the dependence
between columns. In this section, the DAG is expanded
to describe the detailed dependence in pipeline mode.

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32

C
a

ch
e

m
is

s
ra

te
 (

%
)

#resident warps per SM

mem_trans=1

mem_trans=2

mem_trans=3

mem_trans=4

Fig. 6: Measured L2 cache miss rate, obtained on GTX580
using NVIDIA Visual Profiler.

(a) Original dependence
graph of node 9.

9.1 store A(:, 9) into

uncompressed vector x

9.2

9.3

9.4

9.5

9.6

using column 4 to

update x

using column 6 to

update x

using column 7 to

update x

using column 8 to

update x

original node 9

store x into L(:, 9)

and U(:, 9)

original

node 4

original

node 6

original

node 7

original

node 8

(b) Expanded dependence graph of node 9.

Fig. 7: Illustration of DAG analysis.

The operations for factorizing each column is decom-
posed so each original node is also decomposed into
several subnodes. We use node 9 in Fig. 1 to illustrate
how the DAG is expanded, as shown in Fig. 7. All the
subnodes are labeled, and their corresponding opera-
tions are shown in Fig. 7b. All the subnodes belonging
to one original node are executed by a same warp.
Each solid arrow in Fig. 7b denotes data dependence
or computation order. For example, subnodes 9.1 to 9.6
are executed in sequence by a same warp, and subnode
9.2 can start only after node 4 and subnode 9.1 are both
finished.

The number of execution cycles of each subnode is
calculated by the performance model. Still take Fig. 7b
as an example, when the start time of node 9 and finish
time of nodes 4, 6, 7 and 8 are known, it is quite simple to
calculate the earliest finish time of node 9 (i.e. the earliest
finish time of subnode 9.6) by a well-known critical
path analysis. The expanded DAG avoids calculating the
dynamic waiting time in the pipeline mode (shown in
Algorithm 1).

To calculate the earliest finish time of the whole DAG
computed by #warp × #SM warps, a task queue is
maintained for each warp. All the nodes are visited in
a topological order. When a node (say node k) is being
visited, the warp that first finishes its last task (say warp
t) is selected to compute node k, so node k is put into

5

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

P
re

d
ic

te
d

 t
im

e
 (

s)

Actual time (s)

Fig. 8: Predicted time vs. actual time, each point repre-
sents a matrix, obtained on GTX580.

warp t’s task queue and the finish time of node k can be
determined. The earliest finish time of the whole DAG
is just the maximum finish time of all the nodes.

C.3 Validation of the Performance Model
The comparison between the predicted LU factorization
time on GTX580 and the actual runtime is shown in
Fig. 8. The proposed performance model can obtain rea-
sonable results compared with the real results obtained
on NVIDIA GTX580. The average relative error between
the predicted runtime and the actual runtime is 21.8%.

REFERENCES
[1] S. Yan, G. Long, and Y. Zhang, “StreamScan: Fast Scan Algorithms

for GPUs Without Global Barrier Synchronization,” in Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’13, 2013, pp. 229–238.

[2] NVIDIA Corporation, “NVIDIA CUDA C programming
guide.” [Online]. Available: http://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html

[3] Y. Saad and M. H. Schultz, “GMRES: a generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems,” SIAM J.
Sci. Stat. Comput., vol. 7, no. 3, pp. 856–869, Jul. 1986.

[4] “CUSP.” [Online]. Available: https://code.google.com/p/cusp-
library/

[5] C.-J. Lin and J. J. More, “Incomplete Cholesky Factorizations With
Limited Memory,” SIAM J. SCI. COMPUT, vol. 21, no. 1, pp. 24–45,
1999.

[6] X. Chen, W. Wu, Y. Wang, H. Yu, and H. Yang, “An escheduler-
based data dependence analysis and task scheduling for parallel
circuit simulation,” Circuits and Systems II: Express Briefs, IEEE
Transactions on, vol. 58, no. 10, pp. 702–706, oct. 2011.

[7] M. Naumov, “Parallel Solution of Sparse Triangular Linear Systems
in the Preconditioned Iterative Methods on the GPU,” NVIDIA
Technical Report, NVR-2011-001, Tech. Rep., june 2011.

[8] NVIDIA Corporation, “cuSPARSE.” [Online]. Available:
https://developer.nvidia.com/cusparse

[9] X. Xiong and J. Wang, “Parallel forward and back substitution
for efficient power grid simulation,” in Proceedings of IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), nov.
2012, pp. 660–663.

	tpds_preprt
	tpds_supp

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

